Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 628438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33732147

RESUMO

Background: Painful distal symmetrical polyneuropathy (DPN) is a frequent complication of type-2 diabetes mellitus (T2DM) that commonly presents as neuropathic pain and loss of skin nerve fibers. However, there are limited therapies to effectively treat DPN and many of the current animal models of T2DM-induced DPN do not appear to mirror the human disease. Thus, we validated a DPN mouse model induced by a cafeteria-style diet plus low-doses of streptozotocin (STZ). Methods: Female C57BL/6J mice were fed either standard (STD) diet or obesogenic cafeteria (CAF) diet for 32 weeks, starting at 8 weeks old. Eight weeks after starting diets, CAF or STD mice received either four low-doses of STZ or vehicle. Changes in body weight, blood glucose and insulin levels, as well as oral glucose- and insulin-tolerance tests (OGTT and ITT) were determined. The development of mechanical hypersensitivity of the hindpaws was determined using von Frey filaments. Moreover, the effect of the most common neuropathic pain drugs was evaluated on T2DM-induced mechanical allodynia. Finally, the density of PGP -9.5+ (a pan-neuronal marker) axons in the epidermis from the hindpaw glabrous skin was quantified. Results: At 22-24 weeks after STZ injections, CAF + STZ mice had significantly higher glucose and insulin levels compared to CAF + VEH, STD + STZ, and STD + VEH mice, and developed glucose tolerance and insulin resistance. Skin mechanical sensitivity was detected as early as 12 weeks post-STZ injections and it was significantly attenuated by intraperitoneal acute treatment with amitriptyline, gabapentin, tramadol, duloxetine, or carbamazepine but not by diclofenac. The density of PGP-9.5+ nerve fibers was reduced in CAF + STZ mice compared to other groups. Conclusion: This reverse translational study provides a painful DPN mouse model which may help in developing a better understanding of the factors that generate and maintain neuropathic pain and denervation of skin under T2DM and to identify mechanism-based new treatments.

2.
J Sci Food Agric ; 99(2): 587-595, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29938798

RESUMO

BACKGROUND: Protein hydrolysates from food plants, such as legumes, have emerged as a new alternative to treat hyperglycemia, an important risk factor contributing to the development of type 2 diabetes mellitus (T2DM) and its complications. The aim of this work was to assess the antihyperglycemic activity and inhibition of α-glucosidase, and intestinal glucose absorption, and acute toxicity of total hydrolysates and < 1 kDa fractions from Phaseolus lunatus L., Phaseolus vulgaris L., and Mucuna pruriens (L.) DC., obtained by hydrolysis with Alcalase®-Flavourzyme® or pepsine-pancreatin enzymatic systems. RESULTS: In vivo results showed that three of six total hydrolysates and four of six < 1 kDa fractions suppressed starch-induced postprandial hyperglycemia (ED50 range between 1.4 and 93 mg kg-1 ). In vitro, total hydrolysates and fractions, particularly from M. pruriens, inhibited carbohydrate intestinal absorption (from 19.2 to 40%), and α-glucosidase activity (IC50 from 0.86 to 75 mg mL-1 ). Finally, none of the hydrolysates and fractions tested did not show any signs of toxicity (LD50 > 5000 mg kg-1 ). CONCLUSION: These results suggest that hydrolysates and < 1 kDa fractions from P. lunatus, P. vulgaris and M. pruriens are suitable candidates to treat or prevent T2DM. © 2018 Society of Chemical Industry.


Assuntos
Glucose/metabolismo , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Mucuna/química , Phaseolus/química , Hidrolisados de Proteína/administração & dosagem , Animais , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Hiperglicemia/enzimologia , Hiperglicemia/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Ratos , Ratos Wistar , Ultrafiltração , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA