Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
MAGMA ; 36(6): 877-885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37294423

RESUMO

OBJECTIVE: To simplify black-blood late gadolinium enhancement (BL-LGE) cardiac imaging in clinical practice using an image-based algorithm for automated inversion time (TI) selection. MATERIALS AND METHODS: The algorithm selects from BL-LGE TI scout images, the TI corresponding to the image with the highest number of sub-threshold pixels within a region of interest (ROI) encompassing the blood-pool and myocardium. The threshold value corresponds to the most recurrent pixel intensity of all scout images within the ROI. ROI dimensions were optimized in 40 patients' scans. The algorithm was validated retrospectively (80 patients) versus two experts and tested prospectively (5 patients) on a 1.5 T clinical scanner. RESULTS: Automated TI selection took ~ 40 ms per dataset (manual: ~ 17 s). Fleiss' kappa coefficient for automated-manual, intra-observer and inter-observer agreements were [Formula: see text]= 0.73, [Formula: see text] = 0.70 and [Formula: see text] = 0.63, respectively. The agreement between the algorithm and any expert was better than the agreement between the two experts or between two selections of one expert. DISCUSSION: Thanks to its good performance and simplicity of implementation, the proposed algorithm is a good candidate for automated BL-LGE imaging in clinical practice.


Assuntos
Meios de Contraste , Gadolínio , Humanos , Estudos Retrospectivos , Coração/diagnóstico por imagem , Miocárdio , Imageamento por Ressonância Magnética/métodos
2.
Curr Cardiol Rep ; 25(6): 535-542, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115434

RESUMO

PURPOSE OF REVIEW: Imaging plays a crucial role in the therapy of ventricular tachycardia (VT). We offer an overview of the different methods and provide information on their use in a clinical setting. RECENT FINDINGS: The use of imaging in VT has progressed recently. Intracardiac echography facilitates catheter navigation and the targeting of moving intracardiac structures. Integration of pre-procedural CT or MRI allows for targeting the VT substrate, with major expected impact on VT ablation efficacy and efficiency. Advances in computational modeling may further enhance the performance of imaging, giving access to pre-operative simulation of VT. These advances in non-invasive diagnosis are increasingly being coupled with non-invasive approaches for therapy delivery. This review highlights the latest research on the use of imaging in VT procedures. Image-based strategies are progressively shifting from using images as an adjunct tool to electrophysiological techniques, to an integration of imaging as a central element of the treatment strategy.


Assuntos
Ablação por Cateter , Taquicardia Ventricular , Humanos , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/cirurgia , Arritmias Cardíacas , Coração , Frequência Cardíaca , Ablação por Cateter/métodos , Resultado do Tratamento
3.
J Am Heart Assoc ; 11(20): e026028, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36216438

RESUMO

Background Left atrial structural remodeling contributes to the arrhythmogenic substrate of atrial fibrillation (AF), but the role of the right atrium (RA) remains unknown. Our aims were to comprehensively characterize right atrial structural remodeling in AF and identify right atrial parameters predicting recurrences after ablation. Methods and Results A 3.0 T late gadolinium enhanced-cardiac magnetic resonance was obtained in 109 individuals (9 healthy volunteers, 100 patients with AF undergoing ablation). Right and left atrial volume, surface, and sphericity were quantified. Right atrial global and regional fibrosis burden was assessed with validated thresholds. Patients with AF were systematically followed after ablation for recurrences. Progressive right atrial dilation and an increase in sphericity were observed from healthy volunteers to patients with paroxysmal and persistent AF; fibrosis was similar among the groups. The correlation between parameters recapitulating right atrial remodeling was mild. Subsequently, remodeling in both atria was compared. The RA was larger than the left atrium (LA) in all groups. Fibrosis burden was higher in the LA than in the RA of patients with AF, whereas sphericity was higher in the LA of patients with persistent AF only. Fibrosis, volume, and surface of the RA and LA, but not sphericity, were strongly correlated. Tricuspid regurgitation predicted right atrial volume and shape, whereas diabetes was associated with right atrial fibrosis burden; sex and persistent AF also predicted right atrial volume. Fibrosis in the RA was mostly located in the inferior vena cava-RA junction. Only right atrial sphericity is significantly associated with AF recurrences after ablation (hazard ratio, 1.12 [95% CI, 1.01-1.25]). Conclusions AF progression associates with right atrial remodeling in parallel with the LA. Right atrial sphericity yields prognostic significance after ablation.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Fibrilação Atrial/patologia , Ablação por Cateter/métodos , Gadolínio , Átrios do Coração , Fibrose , Espectroscopia de Ressonância Magnética
4.
Diagn Interv Imaging ; 103(12): 607-617, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35961843

RESUMO

PURPOSE: Clinical guidelines recommend the use of bright-blood late gadolinium enhancement (BR-LGE) for the detection and quantification of regional myocardial fibrosis and scar. This technique, however, may suffer from poor contrast at the blood-scar interface, particularly in patients with subendocardial myocardial infarction. The purpose of this study was to assess the clinical performance of a two-dimensional black-blood LGE (BL-LGE) sequence, which combines free-breathing T1-rho-prepared single-shot acquisitions with an advanced non-rigid motion-compensated patch-based reconstruction. MATERIALS AND METHODS: Extended phase graph simulations and phantom experiments were performed to investigate the performance of the motion-correction algorithm and to assess the black-blood properties of the proposed sequence. Fifty-one patients (37 men, 14 women; mean age, 55 ± 15 [SD] years; age range: 19-81 years) with known or suspected cardiac disease prospectively underwent free-breathing T1-rho-prepared BL-LGE imaging with inline non-rigid motion-compensated patch-based reconstruction at 1.5T. Conventional breath-held BR-LGE images were acquired for comparison purposes. Acquisition times were recorded. Two readers graded the image quality and relative contrasts were calculated. Presence, location, and extent of LGE were evaluated. RESULTS: BL-LGE images were acquired with full ventricular coverage in 115 ± 25 (SD) sec (range: 64-160 sec). Image quality was significantly higher on free-breathing BL-LGE imaging than on its breath-held BR-LGE counterpart (3.6 ± 0.7 [SD] [range: 2-4] vs. 3.9 ± 0.2 [SD] [range: 3-4]) (P <0.01) and was graded as diagnostic for 44/51 (86%) patients. The mean scar-to-myocardium and scar-to-blood relative contrasts were significantly higher on BL-LGE images (P < 0.01 for both). The extent of LGE was larger on BL-LGE (median, 5 segments [IQR: 2, 7 segments] vs. median, 4 segments [IQR: 1, 6 segments]) (P < 0.01), the method being particularly sensitive in segments with LGE involving the subendocardium or papillary muscles. In eight patients (16%), BL-LGE could ascertain or rule out a diagnosis otherwise inconclusive on BR-LGE. CONCLUSION: Free-breathing T1-rho-prepared BL-LGE imaging with inline motion compensated reconstruction offers a promising diagnostic technology for the non-invasive assessment of myocardial injuries.


Assuntos
Meios de Contraste , Gadolínio , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Gadolínio/química , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Miocárdio/patologia , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes
5.
J Cardiovasc Electrophysiol ; 33(5): 908-916, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274776

RESUMO

INTRODUCTION: Due to changes in esophageal position, preoperative assessment of the esophageal location may not mitigate the risk of esophageal injury in catheter ablation for atrial fibrillation (AF). This study aimed to assess esophageal motion and its impact on AF ablation strategies. METHODS AND RESULTS: Ninety-seven AF patients underwent two computed tomography (CT) scans. The area at risk of esophageal injury (AAR) was defined as the left atrial surface ≤3 mm from the esophagus. On CT1, ablation lines were drawn blinded to the esophageal location to create three ablation sets: individual pulmonary vein isolation (PVI), wide antral circumferential ablation (WACA), and WACA with linear ablation (WACA + L). Thereafter, ablation lines for WACA and WACA + L were personalized to avoid the AAR. Rigid registration was performed to align CT1 onto CT2, and the relationship between ablation lines and the AAR on CT2 was analyzed. The esophagus moved by 3.6 [2.7 to 5.5] mm. The AAR on CT2 was 8.6 ± 3.3 cm2 , with 77% overlapping that on CT1. High body mass index was associated with the AAR mismatch (standardized ß 0.382, p < .001). Without personalization, AARs on ablation lines for individual PVI, WACA, and WACA + L were 0 [0-0.4], 0.8 [0.5-1.2], and 1.7 [1.2-2.0] cm2 . Despite the esophageal position change, the personalization of ablation lines for WACA and WACA + L reduced the AAR on lines to 0 [0-0.5] and 0.7 [0.3-1.0] cm2 (p < .001 for both). CONCLUSION: The personalization of ablation lines based on a preoperative CT reduced ablation to the AAR despite changes in esophageal position.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Esôfago/lesões , Humanos , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia , Resultado do Tratamento
6.
Med Image Anal ; 67: 101832, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166776

RESUMO

Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the 2018 Left Atrium Segmentation Challenge using 154 3D LGE-MRIs, currently the world's largest atrial LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show that the top method achieved a Dice score of 93.2% and a mean surface to surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved superior results than traditional methods and machine learning approaches containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for atrial LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Furthermore, the findings from this study can potentially be extended to other imaging datasets and modalities, having an impact on the wider medical imaging community.


Assuntos
Benchmarking , Gadolínio , Algoritmos , Átrios do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
7.
Europace ; 23(3): 380-388, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33227129

RESUMO

AIMS: Myocardial fibrosis is a hallmark of atrial fibrillation (AF) and its characterization could be used to guide ablation procedures. Late gadolinium enhanced-magnetic resonance imaging (LGE-MRI) detects areas of atrial fibrosis. However, its accuracy remains controversial. We aimed to analyse the accuracy of LGE-MRI to identify left atrial (LA) arrhythmogenic substrate by analysing voltage and conduction velocity at the areas of LGE. METHODS AND RESULTS: Late gadolinium enhanced-magnetic resonance imaging was performed before ablation in 16 patients. Atrial wall intensity was normalized to blood pool and classified as healthy, interstitial fibrosis, and dense scar tissue depending of the resulting image intensity ratio. Bipolar voltage and local conduction velocity were measured in LA with high-density electroanatomic maps recorded in sinus rhythm and subsequently projected into the LGE-MRI. A semi-automatic, point-by-point correlation was made between LGE-MRI and electroanatomical mapping. Mean bipolar voltage and local velocity progressively decreased from healthy to interstitial fibrosis to scar. There was a significant negative correlation between LGE with voltage (r = -0.39, P < 0.001) and conduction velocity (r = -0.25, P < 0.001). In patients showing dilated atria (LA diameter ≥45 mm) the conduction velocity predictive capacity of LGE-MRI was weaker (r = -0.40 ± 0.09 vs. -0.20 ± 0.13, P = 0.02). CONCLUSIONS: Areas with higher LGE show lower voltage and slower conduction in sinus rhythm. The enhancement intensity correlates with bipolar voltage and conduction velocity in a point-by-point analysis. The performance of LGE-MRI in assessing local velocity might be reduced in patients with dilated atria (LA diameter ≥45).


Assuntos
Fibrilação Atrial , Ablação por Cateter , Fibrilação Atrial/cirurgia , Meios de Contraste , Fibrose , Gadolínio , Átrios do Coração/cirurgia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
8.
IEEE Trans Vis Comput Graph ; 26(8): 2591-2602, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31944978

RESUMO

Two-dimensional representation of 3D anatomical structures is a simple and intuitive way for analysing patient information across populations and image modalities. While cardiac ventricles, especially the left ventricle, have an established standard representation (bull's eye plot), the 2D depiction of the left atrium (LA) remains challenging due to its sub-structural complexity including the pulmonary veins (PV) and the left atrial appendage (LAA). Quasi-conformal flattening techniques, successfully applied to cardiac ventricles, require additional constraints in the case of the LA to place the PV and LAA in the same geometrical 2D location for different cases. Some registration-based methods have been proposed but surface registration is time-consuming and prone to errors when the geometries are very different. We propose a novel atrial flattening methodology where a 2D standardised map of the LA is obtained quickly and without errors related to registration. The LA is divided into five regions which are then mapped to their analogue two-dimensional regions. 67 human left atria from magnetic resonance images (MRI) were studied to derive a population-based template representing the averaged relative locations of the PVs and LAA. The clinical application of our methodology is illustrated on different use cases including the integration of MRI and electroanatomical data.


Assuntos
Átrios do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Veias Pulmonares/diagnóstico por imagem
9.
Front Physiol ; 10: 237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967786

RESUMO

According to clinical studies, around one third of patients with atrial fibrillation (AF) will suffer a stroke during their lifetime. Between 70 and 90% of these strokes are caused by thrombus formed in the left atrial appendage. In patients with contraindications to oral anticoagulants, a left atrial appendage occluder (LAAO) is often implanted to prevent blood flow entering in the LAA. A limited range of LAAO devices is available, with different designs and sizes. Together with the heterogeneity of LAA morphology, these factors make LAAO success dependent on clinician's experience. A sub-optimal LAAO implantation can generate thrombi outside the device, eventually leading to stroke if not treated. The aim of this study was to develop clinician-friendly tools based on biophysical models to optimize LAAO device therapies. A web-based 3D interactive virtual implantation platform, so-called VIDAA, was created to select the most appropriate LAAO configurations (type of device, size, landing zone) for a given patient-specific LAA morphology. An initial LAAO configuration is proposed in VIDAA, automatically computed from LAA shape features (centreline, diameters). The most promising LAAO settings and LAA geometries were exported from VIDAA to build volumetric meshes and run Computational Fluid Dynamics (CFD) simulations to assess blood flow patterns after implantation. Risk of thrombus formation was estimated from the simulated hemodynamics with an index combining information from blood flow velocity and complexity. The combination of the VIDAA platform with in silico indices allowed to identify the LAAO configurations associated to a lower risk of thrombus formation; device positioning was key to the creation of regions with turbulent flows after implantation. Our results demonstrate the potential for optimizing LAAO therapy settings during pre-implant planning based on modeling tools and contribute to reduce the risk of thrombus formation after treatment.

10.
Europace ; 21(5): 724-731, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649273

RESUMO

AIMS: Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) may define left atrial (LA) anatomy and structural remodelling, and facilitate atrial fibrillation (AF) ablation. We aimed to assess the intra- and inter-observer reproducibility and agreement of LGE-CMR parameters with direct application to AF ablation techniques. METHODS AND RESULTS: One experienced and one non-experienced observer performed complete LGE-CMR data analysis twice, on different days, in 40 randomly selected LGE-CMR examinations [20 performed before ablation (pre-ablation) and 20 performed 3 months after ablation (post-ablation)]. Four additional observers (two experienced and two non-experienced) performed complete LGE-CMR data analysis in a subgroup of 30 patients (15 pre-ablation and 15 post-ablation). All LGE-CMR were performed in sinus rhythm. Intra- and inter-observer reproducibility of LA volume, LA area, and sphericity index (SI) was high: coefficient of variation <10% and intraclass correlation coefficient >0.71. Geometric congruency of repeated reconstruction of LA shape was high: maximal error <5 mm for intra-observer and <8 mm for inter-observer. The precision of scar location increased with extent of scar, and was high (Dice coefficient >0.75) when the scar area was >5 cm2 for a single observer and >15 cm2 for multiple observers. Non-experienced observers performed equally well to experienced observers. CONCLUSION: Late gadolinium enhancement cardiac magnetic resonance measurements of LA area, volume, and SI were reproducible, and geometric congruency of LA shape was high. Location of scar was precise for scar areas >5 cm2 for single observers and >15 cm2 for multiple observers, regardless of the observers' experience. These results may serve as a reference for future studies on the role for substrate-based AF ablation procedures.


Assuntos
Fibrilação Atrial , Ablação por Cateter/métodos , Gadolínio/farmacologia , Átrios do Coração , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Remodelamento Atrial , Meios de Contraste/farmacologia , Feminino , Fibrose , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Pré-Operatórios/métodos , Reprodutibilidade dos Testes
11.
Med Image Anal ; 51: 1-12, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347332

RESUMO

Pulmonary vein isolation (PVI) is a common procedure for the treatment of atrial fibrillation (AF) since the initial trigger for AF frequently originates in the pulmonary veins. A successful isolation produces a continuous lesion (scar) completely encircling the veins that stops activation waves from propagating to the atrial body. Unfortunately, the encircling lesion is often incomplete, becoming a combination of scar and gaps of healthy tissue. These gaps are potential causes of AF recurrence, which requires a redo of the isolation procedure. Late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) is a non-invasive method that may also be used to detect gaps, but it is currently a time-consuming process, prone to high inter-observer variability. In this paper, we present a method to semi-automatically identify and quantify ablation gaps. Gap quantification is performed through minimum path search in a graph where every node is a scar patch and the edges are the geodesic distances between patches. We propose the Relative Gap Measure (RGM) to estimate the percentage of gap around a vein, which is defined as the ratio of the overall gap length and the total length of the path that encircles the vein. Additionally, an advanced version of the RGM has been developed to integrate gap quantification estimates from different scar segmentation techniques into a single figure-of-merit. Population-based statistical and regional analysis of gap distribution was performed using a standardised parcellation of the left atrium. We have evaluated our method on synthetic and clinical data from 50 AF patients who underwent PVI with radiofrequency ablation. The population-based analysis concluded that the left superior PV is more prone to lesion gaps while the left inferior PV tends to have less gaps (p < .05 in both cases), in the processed data. This type of information can be very useful for the optimization and objective assessment of PVI interventions.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Ablação por Cateter , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Veias Pulmonares/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Cicatriz/diagnóstico por imagem , Meios de Contraste , Humanos , Compostos Organometálicos , Veias Pulmonares/cirurgia , Medição de Risco , Software
12.
Europace ; 20(12): 1959-1965, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860416

RESUMO

Aims: Left atrial (LA) fibrosis can be identified by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) in patients with atrial fibrillation (AF). However, there is limited information about anatomical fibrosis distribution in the left atrium. The aim is to determine whether there is a preferential spatial distribution of fibrosis in the left atrium in patients with AF. Methods and results: A 3-Tesla LGE-CMR was performed in 113 consecutive patients referred for AF ablation. Images were post-processed and analysed using ADAS-AF software (Galgo Medical), which allows fibrosis identification in 3D colour-coded shells. A regional semiautomatic LA parcellation software was used to divide the atrial wall into 12 segments: 1-4, posterior wall; 5-6, floor; 7, septal wall; 8-11, anterior wall; 12, lateral wall. The presence and amount of fibrosis in each segment was obtained for analysis. After exclusions for artefacts and insufficient image quality, 76 LGE-MRI images (68%) were suitable for fibrosis analysis. Segments 3 and 5, closest to the left inferior pulmonary vein, had significantly higher fibrosis (40.42% ± 23.96 and 25.82% ± 21.24, respectively; P < 0.001), compared with other segments. Segments 8 and 10 in the anterior wall contained the lowest fibrosis (2.54% ± 5.78 and 3.82% ± 11.59, respectively; P < 0.001). Age >60 years was significantly associated with increased LA fibrosis [95% confidence interval (CI) 0.19-8.39, P = 0.04] and persistent AF approached significance (95% CI -0.19% to 7.83%, P = 0.08). Conclusion: In patients with AF, the fibrotic area is preferentially located at the posterior wall and floor around the antrum of the left inferior pulmonary vein. Age >60 years was associated with increased fibrosis.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Função do Átrio Esquerdo , Remodelamento Atrial , Meios de Contraste/administração & dosagem , Átrios do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Compostos Organometálicos/administração & dosagem , Veias Pulmonares/diagnóstico por imagem , Fatores Etários , Idoso , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Feminino , Fibrose , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Veias Pulmonares/patologia , Veias Pulmonares/fisiopatologia , Fatores de Risco
13.
Int J Numer Method Biomed Eng ; : e3100, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737037

RESUMO

The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients.

14.
J Cardiovasc Magn Reson ; 20(1): 21, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29554919

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) imaging has been used to visualise post-ablation atrial scar (PAAS), generally employing a three-dimensional (3D) late gadolinium enhancement (LGE) technique. However the reproducibility of PAAS imaging has not been determined. This cross-over study is the first to investigate the reproducibility of the technique, crucial for both future research design and clinical implementation. METHODS: Forty subjects undergoing first time ablation for atrial fibrillation (AF) had detailed CMR assessment of PAAS. Following baseline pre-ablation scan, two scans (separated by 48 h) were performed at three months post-ablation. Each scan session included 3D LGE acquisition at 10, 20 and 30 min post administration of gadolinium-based contrast agent (GBCA). Subjects were allocated at second scan post-ablation to identical imaging parameters ('Repro', n = 10), 3 T scanner ('3 T', n = 10), half-slice thickness ('Half-slice', n = 10) or half GBCA dose ('Half-gad', n = 10). PAAS was compared to baseline scar and then reproducibility was assessed for two measures of thresholded scar (% left atrial (LA) occupied by PAAS (%LA PAAS) and Pulmonary Vein Encirclement (PVE)), and then four measures of non-thresholded scar (point-by-point assessment of PAAS, four normalisation methods). Thresholded measures of PAAS were evaluated against procedural outcome (AF recurrence). RESULTS: A total of 271 3D acquisitions (out of maximum 280, 96.7%) were acquired. At 20 and 30 min, inter-scan reproducibility was good to excellent (coefficient of variation at 20 min and 30 min: %LA PAAS 0.41 and 0.20; PVE 0.13 and 0.04 respectively for 'Repro' group). Changes in imaging parameters, especially reduced GBCA dose, reduced inter-scan reproducibility, but for most measures remained good to excellent (ICC for %LA PAAS 0.454-0.825, PVE 0.618-0.809 at 30 min). For non-thresholded scar, highest reproducibility was observed using blood pool z-score normalisation technique: inter-scan ICC 0.759 (absolute agreement, 'Repro' group). There was no significant relationship between indices of PAAS and AF recurrence. CONCLUSION: PAAS imaging is a reproducible finding. Imaging should be performed at least 20 min post-GBCA injection, and a blood pool z-score should be considered for normalisation of signal intensities. The clinical implications of these findings remain to be established in the absence of a simple correlation with arrhythmia outcome. TRIAL REGISTRATION: United Kingdom National Research Ethics Service 08/H0802/68 - 30th September 2008.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Cicatriz/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Imagem Cinética por Ressonância Magnética , Compostos Organometálicos/administração & dosagem , Idoso , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Cicatriz/etiologia , Cicatriz/patologia , Cicatriz/fisiopatologia , Estudos Cross-Over , Feminino , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Valor Preditivo dos Testes , Recidiva , Reprodutibilidade dos Testes , Fatores de Tempo , Resultado do Tratamento
15.
Circ Cardiovasc Imaging ; 10(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28093413

RESUMO

BACKGROUND: Fetal growth restriction (FGR) affects 5% to 10% of newborns and is associated with increased cardiovascular mortality in adulthood. We evaluated whether prenatal cardiovascular changes previously demonstrated in FGR persist into preadolescence. METHODS AND RESULTS: A cohort study of 58 FGR (defined as birth weight below 10th centile) and 94 normally grown fetuses identified in utero and followed-up into preadolescence (8-12 years of age) by echocardiography and 3-dimensional shape computational analysis. Compared with controls, FGR preadolescents had a different cardiac shape, with more spherical and smaller hearts. Left ventricular ejection fraction was similar among groups, whereas FGR had decreased longitudinal motion (decreased mitral annular systolic peak velocities: control median, 0.11 m/s [interquartile range, 0.09-0.12] versus FGR median 0.09 m/s [interquartile range, 0.09-0.10]; P<0.01) and impaired relaxation (isovolumic relaxation time: control, 0.21 ms [interquartile range, 0.12-0.35] versus FGR, 0.35 ms [interquartile range, 0.20-0.46]; P=0.04). Global longitudinal strain was decreased (control mean, -22.4% [SD, 1.37] versus FGR mean, -21.5% [SD, 1.16]; P<0.001) compensated by an increased circumferential strain and with a higher prevalence of postsystolic shortening in FGR as compared with controls. These differences persisted after adjustment for parental ethnicity and smoking, prenatal glucocorticoid administration, preeclampsia, gestational age at delivery, days in intensive care unit, sex, age, and body surface area at evaluation. CONCLUSIONS: This study provides evidence that cardiac remodeling induced by FGR persists until preadolescence with findings similar to those reported in their prenatal life and childhood. The findings support the hypothesis of primary cardiac programming in FGR for explaining the association between low birth weight and cardiovascular risk in adulthood.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Retardo do Crescimento Fetal/fisiopatologia , Coração Fetal/fisiopatologia , Função Ventricular Esquerda , Remodelação Ventricular , Fatores Etários , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/etiologia , Estudos de Casos e Controles , Criança , Ecocardiografia Doppler , Ecocardiografia Tridimensional , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Coração Fetal/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Contração Miocárdica , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Puberdade , Fatores de Risco , Volume Sistólico , Ultrassonografia Pré-Natal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA