Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816213

RESUMO

In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.


Assuntos
Dinaminas , Mitocôndrias , Dinâmica Mitocondrial , Anticorpos de Domínio Único , Dinaminas/metabolismo , Humanos , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/imunologia , Mitocôndrias/metabolismo , Proteômica/métodos , Animais , Ligação Proteica , Células HeLa , Proteínas Mitocondriais/metabolismo
2.
Front Immunol ; 14: 1264179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164132

RESUMO

Signal-regulatory protein α (SIRPα) expressed by myeloid cells is of particular interest for therapeutic strategies targeting the interaction between SIRPα and the "don't eat me" ligand CD47 and as a marker to monitor macrophage infiltration into tumor lesions. To address both approaches, we developed a set of novel human SIRPα (hSIRPα)-specific nanobodies (Nbs). We identified high-affinity Nbs targeting the hSIRPα/hCD47 interface, thereby enhancing antibody-dependent cellular phagocytosis. For non-invasive in vivo imaging, we chose S36 Nb as a non-modulating binder. By quantitative positron emission tomography in novel hSIRPα/hCD47 knock-in mice, we demonstrated the applicability of 64Cu-hSIRPα-S36 Nb to visualize tumor infiltration of myeloid cells. We envision that the hSIRPα-Nbs presented in this study have potential as versatile theranostic probes, including novel myeloid-specific checkpoint inhibitors for combinatorial treatment approaches and for in vivo stratification and monitoring of individual responses during cancer immunotherapies.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Anticorpos de Domínio Único/uso terapêutico , Fagocitose , Células Mieloides/metabolismo , Macrófagos/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico
3.
Front Mol Biosci ; 9: 835302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359597

RESUMO

The mitochondrial outer membrane (MOM)-anchored GTPase Miro1, is a central player in mitochondrial transport and homeostasis. The dysregulation of Miro1 in amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) suggests that Miro1 may be a potential biomarker or drug target in neuronal disorders. However, the molecular functionality of Miro1 under (patho-) physiological conditions is poorly known. For a more comprehensive understanding of the molecular functions of Miro1, we have developed Miro1-specific nanobodies (Nbs) as novel research tools. We identified seven Nbs that bind either the N- or C-terminal GTPase domain of Miro1 and demonstrate their application as research tools for proteomic and imaging approaches. To visualize the dynamics of Miro1 in real time, we selected intracellularly functional Nbs, which we reformatted into chromobodies (Cbs) for time-lapse imaging of Miro1. By genetic fusion to an Fbox domain, these Nbs were further converted into Miro1-specific degrons and applied for targeted degradation of Miro1 in live cells. In summary, this study presents a collection of novel Nbs that serve as a toolkit for advanced biochemical and intracellular studies and modulations of Miro1, thereby contributing to the understanding of the functional role of Miro1 in disease-derived model systems.

4.
Front Immunol ; 12: 799910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956237

RESUMO

The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4+ cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4+ cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64Cu-radiolabeled CD4-Nb1 in CD4+ T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imagem Molecular/métodos , Imagem Óptica/métodos , Anticorpos de Domínio Único , Animais , Xenoenxertos , Humanos , Camundongos
5.
EMBO Rep ; 22(5): e52325, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904225

RESUMO

In light of the COVID-19 pandemic, there is an ongoing need for diagnostic tools to monitor the immune status of large patient cohorts and the effectiveness of vaccination campaigns. Here, we present 11 unique nanobodies (Nbs) specific for the SARS-CoV-2 spike receptor-binding domain (RBD), of which 8 Nbs potently inhibit the interaction of RBD with angiotensin-converting enzyme 2 (ACE2) as the major viral docking site. Following detailed epitope mapping and structural analysis, we select two inhibitory Nbs, one of which binds an epitope inside and one of which binds an epitope outside the RBD:ACE2 interface. Based on these, we generate a biparatopic nanobody (bipNb) with viral neutralization efficacy in the picomolar range. Using bipNb as a surrogate, we establish a competitive multiplex binding assay ("NeutrobodyPlex") for detailed analysis of the presence and performance of neutralizing RBD-binding antibodies in serum of convalescent or vaccinated patients. We demonstrate that NeutrobodyPlex enables high-throughput screening and detailed analysis of neutralizing immune responses in infected or vaccinated individuals, to monitor immune status or to guide vaccine design.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Anticorpos Antivirais/metabolismo , Humanos , Imunidade , Pandemias , Ligação Proteica , SARS-CoV-2 , Anticorpos de Domínio Único/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Mol Cell Proteomics ; 14(3): 707-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595278

RESUMO

ß-catenin is the key component of the canonical Wnt pathway and plays a crucial role in a multitude of developmental and homeostatic processes. The different tasks of ß-catenin are orchestrated by its subcellular localization and participation in multiprotein complexes. To gain a better understanding of ß-catenin's role in living cells we have generated a new set of single domain antibodies, referred to as nanobodies, derived from heavy chain antibodies of camelids. We selected nanobodies recognizing the N-terminal, core or C-terminal domain of ß-catenin and applied these new high-affinity binders as capture molecules in sandwich immunoassays and co-immunoprecipitations of endogenous ß-catenin complexes. In addition, we engineered intracellularly functional anti-ß-catenin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. For the first time, we were able to visualize the subcellular localization and nuclear translocation of endogenous ß-catenin in living cells using these chromobodies. Moreover, the chromobody signal allowed us to trace the accumulation of diffusible, hypo-phosphorylated ß-catenin in response to compound treatment in real time using High Content Imaging. The anti-ß-catenin nanobodies and chromobodies characterized in this study are versatile tools that enable a novel and unique approach to monitor the dynamics of subcellular ß-catenin in biochemical and cell biological assays.


Assuntos
Camelídeos Americanos/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Cromatografia de Afinidade , Citoplasma/metabolismo , Imunofluorescência/métodos , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA