Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 12(6): 1066-79, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21442718

RESUMO

A lipid bilayer deposited on an electrode surface can serve as a benchmark system to investigate lipid-protein interactions in the presence of physiological electric fields. Recoverin and myelin-associated glycoprotein (MAG) are used to study the impact of strong and weak protein-lipid interactions on the structure of model lipid bilayers, respectively. The structural changes in lipid bilayers are followed using electrochemical polarization modulation infrared reflection-absorption spectroscopy (PM IRRAS). Recoverin contains a myristoyl group that anchors in the hydrophobic part of a cell membrane. Insertion of the protein into the 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-cholesterol lipid bilayer leads to an increase in the capacitance of the lipid film adsorbed on a gold electrode surface. The stability and kinetics of the electric-field-driven adsorption-desorption process are not affected by the interaction with protein. Upon interaction with recoverin, the hydrophobic hydrocarbon chains become less ordered. The polar head groups are separated from each other, which allows for recoverin association in the membrane. MAG is known to interact with glycolipids present on the surface of a cell membrane. Upon probing the interaction of the DMPC-cholesterol-glycolipid bilayer with MAG a slight decrease in the capacity of the adsorbed lipid film is observed. The stability of the lipid bilayer increases towards negative potentials. At the molecular scale this interaction results in minor changes in the structure of the lipid bilayer. MAG causes small ordering in the hydrocarbon chains region and an increase in the hydration of the polar head groups. Combining an electrochemical approach with a structure-sensitive technique, such as PM IRRAS, is a powerful tool to follow small but significant changes in the structure of a supramolecular assembly.


Assuntos
Ouro/química , Bicamadas Lipídicas/química , Lipídeos/química , Glicoproteína Associada a Mielina/química , Colesterol/química , Dimiristoilfosfatidilcolina/química , Técnicas Eletroquímicas , Eletrodos , Ligação Proteica , Espectrofotometria Infravermelho
2.
Langmuir ; 26(1): 362-70, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19711923

RESUMO

A self-assembled monolayer (SAM) on gold was formed with specifically perdeuterated hexaethylene glycol-terminated alkanethiol HS(CD(2))(12)(O-CH(2)-CH(2))(6)OCH(3) (D-OEG). The structure of the d-alkane and the oligoethylene glycol (OEG) parts of the molecule in a SAM was studied by means of polarization modulation infrared reflection absorption spectroscopy. The D-OEG monolayers are highly ordered and exist in a crystalline phase. The d-alkane chain adopts an all-trans conformation. Both, the d-alkane chain and long axis of the OEG part make an angle of 26.0 degrees +/- 1.5 degrees with respect to the surface normal, a value characteristic for the tilt of solid n-alkane thiols in the SAMs on Au. The positions of nu(as)(COC) and CH(2) wagging and rocking modes indicate a helical arrangement of the OEG chains. The D-OEG SAMs were exposed to 25 muM Br(2) in two ways: (i) by immersion into the Br(2) solution and (ii) in the galvanic cell Au|D-OEG SAM|25 muM Br(2) + 0.1 M Na(2)SO(4)|| 50 muM KBr + 0.1 M Na(2)SO(4)|Au. In the galvanic cell, the oxidant (Br(2)) is scavenged by a heterogeneous electron transfer reaction, slowing the reaction of D-OEG with Br(2). The slow progress of the reaction with Br(2) allowed us to draw conclusions about molecular rearrangements taking place during this reaction. The reaction with Br(2) starts on boundaries and/or defects present in the SAM. First, at the defect place, the alpha-C atom of the OEG chain reacts with Br(2) and the OEG part of the molecule is removed from the monolayer. In consequence an increase in disorder in the OEG part of the SAM is observed. The same mechanism of the reaction with Br(2) is applied for the d-dodecane alkanethiol part of the molecule. This reaction is slow, thus the order and the tilt of the hydrocarbon chain changes only a little during the reaction time.

3.
Langmuir ; 24(14): 7605-13, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18547087

RESUMO

Patterned cell cultures obtained by microcontact printing have been modified in situ by a microelectrochemical technique. It relies on lifting cell-repellent properties of oligo(ethylene glycol)-terminated self-assembled monolayers (SAMs) by Br2, which is produced locally by an ultramicroelectrode of a scanning electrochemical microscope (SECM). After Br2 treatment the SAM shows increased permeability and terminal hydrophobicity as characterized by SECM approach curves and contact angle measurements, respectively. Polarization-modulation Fourier transform infrared reflection-absorption spectroscopic (PM FTIRRAS) studies on macroscopic samples show that the Br2 treatment removes the oligo(ethelyene glycol) part of the monolayer within a second time scale while the alkyl part of the SAM degrades with a much slower rate. The lateral extension of the modification can be limited because heterogeneous electron transfer from the gold support destroys part of the electrogenerated Br2 once the monolayer is locally damaged in a SECM feedback configuration. This effect has been reproduced and analyzed by exposing SAM-modified samples to Br2 in the galvanic cell Au|SAM|5 microM Br2 + 0.1 M Na2SO4||10 microM KBr + 0.1 M Na2SO4|Au followed by an PM FTIRRAS characterization of the changes in the monolayer system.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular , Permeabilidade da Membrana Celular , Eletroquímica , Etilenoglicol , Humanos , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Langmuir ; 24(14): 7378-87, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18553991

RESUMO

Ultrathin titanium layers when deposited on the surface of gold can be successfully applied for infrared reflection absorption spectroscopy (IRRAS) investigations. It was shown that the reflectivity, the phase shift, and the mean square electric field of the p- and s-polarized IR radiation in up to 20 nm thick titanium layers covered with a 3-4 nm thick layer of native oxide are comparable to those of the air/gold interface. The surface selection rule is fulfilled. Thus, qualitative and quantitative analysis of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers transferred in liquid expanded (LE) and liquid condensed (LC) states can be performed. Differences are found in the hydration state and molecular arrangement of the two investigated bilayers. In the DMPC bilayer in the LE state, the C-N bond in the positively charged choline moiety is inclined by approximately 70 degrees toward the surface of the negatively charged titanium substrate. In the phosphate moiety, the in-plane vector of the O-P-O group makes a small angle of approximately 15 degrees to the surface normal. This open structure of the lipid molecule corresponds to the B crystal structure of the DMPC molecule and provides space for strong hydration of the polar headgroup. In the DMPC bilayer in the LC state, the intermolecular distances are reduced; the C-N bond of the choline group makes a smaller angle to the surface normal, and the in-plane vector of the O-P-O group in the phosphate moiety displays a larger tilt. The degree of hydration is reduced. The arrangement of the polar headgroup region corresponds to the A crystal structure of the DMPC molecule.


Assuntos
Ouro/química , Bicamadas Lipídicas/química , Oxigênio/química , Titânio/química , Dimiristoilfosfatidilcolina/química , Hidrocarbonetos/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Estrutura Molecular , Fosfolipídeos/química , Espectrofotometria Infravermelho , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA