Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38903087

RESUMO

Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ1 riboswitches. Multiple X-ray co-crystal structures of synthetic ligands with the Thermoanaerobacter tengcongensis (Tte)-PreQ1 riboswitch confirm a common binding site with the cognate ligand, despite considerable chemical differences among the ligands. Structure probing assays demonstrate that one ligand causes conformational changes similar to PreQ1 in six structurally and mechanistically diverse PreQ1 riboswitch aptamers. Single-molecule force spectroscopy is used to demonstrate differential modes of riboswitch stabilization by the ligands. Binding of the natural ligand brings about the formation of a persistent, folded pseudoknot structure, whereas a synthetic ligand decreases the rate of unfolding through a kinetic mechanism. Single round transcription termination assays show the biochemical activity of the ligands, while a GFP reporter system reveals compound activity in regulating gene expression in live cells without toxicity. Taken together, this study reveals that diverse small molecules can impact gene expression in live cells by altering conformational changes in RNA structures through distinct mechanisms.

2.
Plant Sci ; 326: 111524, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328178

RESUMO

Two rice GH18 chitinases, Oschib1 and Oschib2, belonging to family 8 of plant pathogenesis-related proteins (PR proteins) were expressed, purified, and characterized. These enzymes, which have the structural features of class IIIb chitinases, preferentially cleaved the second glycosidic linkage from the non-reducing end of substrate chitin oligosaccharides as opposed to rice class IIIa enzymes, OsChib3a and OsChib3b, which mainly cleaved the fourth linkage from the non-reducing end of chitin hexasaccharide [(GlcNAc)6]. Oschib1 and Oschiab2 inhibited the growth of Fusarium solani, but showed only a weak or no antifungal activity against Aspergillus niger and Trichoderma viride on the agar plates. Structural analysis of Oschib1 and Oschib2 revealed that these enzymes have two large loops extruded from the (ß/α)8 TIM-barrel fold, which are absent in the structures of class IIIa chitinases. The differences in the cleavage site preferences toward chitin oligosaccharides between plant class IIIa and IIIb chitinases are likely attributed to the additional loop structures found in the IIIb enzymes. The class IIIb chitinases, Oschib1 and Oschib2, seem to play important roles for the effective hydrolysis of chitin oligosaccharides released from the cell wall of the pathogenic fungi by the cooperative actions with the extracellular chitinases in rice.


Assuntos
Quitinases , Oryza , Quitinases/metabolismo , Oryza/genética , Oryza/metabolismo , Quitina/química , Quitina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oligossacarídeos/metabolismo , Hidrólise
3.
Plant Sci ; 321: 111310, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696910

RESUMO

A unique GH18 chitinase containing two N-terminal lysin motifs (PrLysM1 and PrLysM2) was first found in fern, Pteris ryukyuensis (Onaga and Taira, Glycobiology, 18, 414-423, 2008). This type of LysM-chitinase conjugates is not usually found in plants but in fungi. Here, we produced a similar GH18 chitinase with one N-terminal LysM module (EaLysM) from the fern, Equisetum arvense (EaChiA, Inamine et al., Biosci. Biotechnol. Biochem., 79, 1296-1304, 2015), using an Escherichia coli expression system and characterized for its structure and mechanism of action. The crystal structure of EaLysM exhibited an almost identical fold (ßααß) to that of PrLysM2. From isothermal titration calorimetry and nuclear magnetic resonance, the binding mode and affinities of EaLysM for chitooligosaccharides (GlcNAc)n (3, 4, 5, and 6) were found to be comparable to those of PrLysM2. The LysM module in EaChiA is likely to bind (GlcNAc)n almost independently through CH-π stacking of a Tyr residue with the pyranose ring. The (GlcNAc)n-binding mode of LysMs in the LysM-chitinase conjugates from fern plants appears to differ from that of plant LysMs acting in chitin- or Nod-signal perception, in which multiple LysMs cooperatively act on (GlcNAc)n. Phylogenetic analysis suggested that LysM-GH18 conjugates of fern plants formed a monophyletic group and had been separated earlier than forming the clade of fungal chitinases with LysMs.


Assuntos
Quitinases , Gleiquênias , Quitina/química , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Gleiquênias/genética , Gleiquênias/metabolismo , Filogenia
4.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442388

RESUMO

Tail-anchored (TA) membrane proteins have a potential risk to be mistargeted to the mitochondrial outer membrane (OM). Such mislocalized TA proteins can be extracted by the mitochondrial AAA-ATPase Msp1 from the OM and transferred to the ER for ER protein quality control involving ubiquitination by the ER-resident Doa10 complex. Yet it remains unclear how the extracted TA proteins can move to the ER crossing the aqueous cytosol and whether this transfer to the ER is essential for the clearance of mislocalized TA proteins. Here we show by time-lapse microscopy that mislocalized TA proteins, including an authentic ER-TA protein, indeed move from mitochondria to the ER in a manner strictly dependent on Msp1 expression. The Msp1-dependent mitochondria-to-ER transfer of TA proteins is blocked by defects in the GET system, and this block is not due to impaired Doa10 functions. Thus, the GET pathway facilitates the transfer of mislocalized TA proteins from mitochondria to the ER.


Assuntos
Adenosina Trifosfatases , Retículo Endoplasmático , Proteínas de Membrana , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Glycobiology ; 32(4): 356-364, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34939106

RESUMO

Plant GH19 chitinases have several loop structures, which may define their enzymatic properties. Among these loops, the longest loop, Loop-III, is most frequently conserved in GH19 enzymes. A GH19 chitinase from the moss Bryum coronatum (BcChi-A) has only one loop structure, Loop-III, which is connected to the catalytically important ß-sheet region. Here, we produced and characterized a Loop-III-deleted mutant of BcChi-A (BcChi-A-ΔIII) and found that its stability and chitinase activity were strongly reduced. The deletion of Loop-III also moderately affected the chitooligosaccharide binding ability as well as the binding mode to the substrate-binding groove. The crystal structure of an inactive mutant of BcChi-A-ΔIII was successfully solved, revealing that the remaining polypeptide chain has an almost identical fold to that of the original protein. Loop-III is not necessarily essential for the folding of the enzyme protein. However, closer examination of the crystal structure revealed that the deletion of Loop-III altered the arrangement of the catalytic triad, Glu61, Glu70 and Ser102, and the orientation of the Trp103 side chain, which is important for sugar residue binding. We concluded that Loop-III is not directly involved in the enzymatic activity but assists the enzyme function by stabilizing the conformation of the ß-sheet region and the adjacent substrate-binding platform from behind the core-functional regions.


Assuntos
Briófitas , Bryopsida , Quitinases , Briófitas/metabolismo , Bryopsida/metabolismo , Quitina/química , Quitinases/química , Conformação Proteica em Folha beta
6.
Nucleic Acids Res ; 50(7): 3601-3615, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34568951

RESUMO

Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.


Assuntos
DNA Helicases , DNA Polimerase Dirigida por DNA , Thermococcus , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Eucariotos/metabolismo , Thermococcus/enzimologia , Thermococcus/metabolismo
7.
Nat Commun ; 12(1): 5856, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615874

RESUMO

The role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the class-I PreQ1 riboswitch aptamer covalently. For the most active probe (11), a diazirine-based photocrosslinking analog of PreQ1, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the probe. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to 11, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1, which is similar in structure to guanine, interacts with human RNAs.


Assuntos
Pirimidinonas/metabolismo , Pirróis/metabolismo , Transcriptoma , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Pirimidinonas/química , Pirróis/química , RNA Bacteriano/genética , Riboswitch
8.
J Biol Chem ; 297(3): 101028, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339732

RESUMO

Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5' leader sequence of precursor tRNA (pre-tRNA). Ribonucleoprotein RNase P and protein-only RNase P (PRORP) in eukaryotes have been extensively studied, but the mechanism by which a prokaryotic nuclease recognizes and cleaves pre-tRNA is unclear. To gain insights into this mechanism, we studied homologs of Aquifex RNase P (HARPs), thought to be enzymes of approximately 23 kDa comprising only this nuclease domain. We determined the cryo-EM structure of Aq880, the first identified HARP enzyme. The structure unexpectedly revealed that Aq880 consists of both the nuclease and protruding helical (PrH) domains. Aq880 monomers assemble into a dimer via the PrH domain. Six dimers form a dodecamer with a left-handed one-turn superhelical structure. The structure also revealed that the active site of Aq880 is analogous to that of eukaryotic PRORPs. The pre-tRNA docking model demonstrated that 5' processing of pre-tRNAs is achieved by two adjacent dimers within the dodecamer. One dimer is responsible for catalysis, and the PrH domains of the other dimer are responsible for pre-tRNA elbow recognition. Our study suggests that HARPs measure an invariant distance from the pre-tRNA elbow to cleave the 5' leader sequence, which is analogous to the mechanism of eukaryotic PRORPs and the ribonucleoprotein RNase P. Collectively, these findings shed light on how different types of RNase P enzymes utilize the same pre-tRNA processing.


Assuntos
Precursores de RNA/metabolismo , RNA de Transferência/metabolismo , Ribonuclease P/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Dimerização , Simulação de Acoplamento Molecular , Ribonuclease P/metabolismo , Homologia de Sequência de Aminoácidos
9.
Nucleic Acids Res ; 49(8): 4599-4612, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849056

RESUMO

The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA Primase/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Thermococcus/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/química , Cromatografia em Gel , DNA Helicases/genética , DNA Polimerase III/química , DNA Primase/genética , DNA Primase/metabolismo , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Eletroforese em Gel de Poliacrilamida Nativa , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Proteínas Recombinantes , Ressonância de Plasmônio de Superfície , Thermococcus/genética
10.
Mol Immunol ; 116: 199-207, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31731097

RESUMO

A 38 kDa ß-1,3-glucanase allergen from Cryptomeria japonica pollen (CJP38) was recombinantly produced in E. coli and purified to homogeneity with the use of Ni-affinity resin. CJP38 hydrolyzed ß-1,3-glucans such as CM-curdlan and laminarioligosaccharides in an endo-splitting manner. The optimum pH and temperature for ß-1,3-glucanase activity were approximately 4.5 and 50 °C, respectively. The enzyme was stable at 30-60 °C and pH 4.0-10.5. Furthermore, CJP38 catalyzed a transglycosylation reaction to yield reaction products with a molecular weight higher than those of the starting laminarioligosaccharide substrates. The three-dimensional structure of CJP38 was determined using X-ray crystallography at 1.5 Å resolution. CJP38 exhibited the typical (ß/α)8 TIM-barrel motif, similar to allergenic ß-1,3-glucanases from banana (Mus a 5) and rubber tree latex (Hev b 2). Amino acid sequence alignment of these proteins indicated that the two-consensus IgE epitopes identified on the molecular surfaces of Mus a 5 and Hev b 2 were highly conserved in CJP38. Their conformations and surface locations were quite similar for these proteins. Sequence and structural conservation of these regions suggest that CJP38 is a candidate allergen responsible for the pollen-latex-fruit syndrome relating to Japanese cedar pollinosis.


Assuntos
Alérgenos/química , Antígenos de Plantas/química , Cryptomeria/química , Pólen/química , Alérgenos/imunologia , Sequência de Aminoácidos , Antígenos de Plantas/imunologia , Reações Cruzadas/imunologia , Cryptomeria/imunologia , Cristalografia por Raios X/métodos , Epitopos/química , Epitopos/imunologia , Escherichia coli/imunologia , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina E/química , Imunoglobulina E/imunologia , Látex/química , Látex/imunologia , Musa/química , Musa/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Temperatura
11.
Nat Commun ; 10(1): 1501, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940810

RESUMO

Riboswitches are naturally occurring RNA aptamers that regulate gene expression by binding to specific small molecules. Riboswitches control the expression of essential bacterial genes and are important models for RNA-small molecule recognition. Here, we report the discovery of a class of synthetic small molecules that bind to PreQ1 riboswitch aptamers. These molecules bind specifically and reversibly to the aptamers with high affinity and induce a conformational change. Furthermore, the ligands modulate riboswitch activity through transcriptional termination despite no obvious chemical similarity to the cognate ligand. X-ray crystallographic studies reveal that the ligands share a binding site with the cognate ligand but make different contacts. Finally, alteration of the chemical structure of the ligand causes changes in the mode of RNA binding and affects regulatory function. Thus, target- and structure-based approaches can be used to identify and understand the mechanism of synthetic ligands that bind to and regulate complex, folded RNAs.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Pirróis/química , Pirróis/metabolismo , Riboswitch , Aptâmeros de Nucleotídeos/genética , Cristalografia por Raios X , Ligantes , Conformação de Ácido Nucleico , Pirimidinonas/síntese química , Pirróis/síntese química , Dobramento de RNA
12.
J Mol Biol ; 431(4): 748-763, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639408

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR) loci and CRISPR-associated (Cas) genes encode CRISPR RNAs (crRNA) and Cas proteins, respectively, which play important roles in the adaptive immunity system (CRISPR-Cas system) in prokaryotes. The crRNA and Cas proteins form ribonucleoprotein effector complexes to capture and degrade invading genetic materials with base complementarity to the crRNA guide sequences. The Csm complex, a type III-A effector complex, comprises five Cas proteins (Csm1-Csm5) and a crRNA, which co-transcriptionally degrades invading DNA and RNA. Here we report the crystal structures of the Staphylococcus epidermidis Csm2 (SeCsm2) and Thermoplasma volcanium Csm3 (TvCsm3) at 2.4- and 2.7-Å resolutions, respectively. SeCsm2 adopts a monomeric globular fold by itself, in striking contrast to the previously reported Thermotoga maritima Csm2, which adopted an extended conformation and formed a dimeric structure. We propose that the globular monomeric form is the bona fide structure of Csm2. TvCsm3 forms a filamentous structure in the crystals. The molecular arrangement of TvCsm3 is similar to that of the stacked Cmr4 proteins in the Cmr complex, suggesting the functionally relevant architecture of the present Csm3 structure. We constructed model structures of the Csm complex, which revealed that Csm3 binds the crRNA and periodically deforms the crRNA-target duplex by a similar mechanism to that of Cmr4 in the Cmr complex. The model and mutational analysis suggest that the conserved lysine residue of Csm2 is important for target RNA binding, and Csm2 stabilizes the active structure of the Csm complex to facilitate the reaction.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sequência de Aminoácidos , RNA Bacteriano/genética , Staphylococcus epidermidis/genética , Thermotoga maritima/genética
13.
J Agric Food Chem ; 66(22): 5699-5706, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29756783

RESUMO

CJP-4 is an allergen found in pollen of the Japanese cedar Cryptomeria japonica. The protein is a two-domain family GH19 (class IV) Chitinase consisting of an N-terminal CBM18 domain and a GH19 catalytic domain. Here, we produced recombinant CJP-4 and CBM18-truncated CJP-4 (CJP-4-Cat) proteins. In addition to solving the crystal structure of CJP-4-Cat by X-ray crystallography, we analyzed the ability of both proteins to hydrolyze chitin oligosaccharides, (GlcNAc) n, polysaccharide substrates, glycol chitin, and ß-chitin nanofiber and examined their inhibitory activity toward fungal growth. Truncation of the CBM18 domain did not significantly affect the mode of (GlcNAc) n hydrolysis. However, significant effects were observed when we used the polysaccharide substrates. The activity of CJP-4 toward the soluble substrate, glycol chitin, was lower than that of CJP-4-Cat. In contrast, CJP-4 exhibited higher activity toward ß-chitin nanofiber, an insoluble substrate, than did CJP-4-Cat. Fungal growth was strongly inhibited by CJP-4 but not by CJP-4-Cat. These results indicate that the CBM18 domain assists the hydrolysis of insoluble substrate and the antifungal action of CJP-4-Cat by binding to chitin. CJP-4-Cat was found to have only two loops (loops I and III), as reported for ChiA, an allergenic class IV Chitinase from maize.


Assuntos
Quitinases/química , Cryptomeria/enzimologia , Proteínas de Plantas/química , Pólen/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Quitinases/genética , Quitinases/metabolismo , Cryptomeria/química , Cryptomeria/genética , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/química , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
Nucleic Acids Res ; 46(4): 1565-1583, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390138

RESUMO

Modified uridine containing taurine, 5-taurinomethyluridine (τm5U), is found at the anticodon first position of mitochondrial (mt-)transfer RNAs (tRNAs). Previously, we reported that τm5U is absent in mt-tRNAs with pathogenic mutations associated with mitochondrial diseases. However, biogenesis and physiological role of τm5U remained elusive. Here, we elucidated τm5U biogenesis by confirming that 5,10-methylene-tetrahydrofolate and taurine are metabolic substrates for τm5U formation catalyzed by MTO1 and GTPBP3. GTPBP3-knockout cells exhibited respiratory defects and reduced mitochondrial translation. Very little τm5U34 was detected in patient's cells with the GTPBP3 mutation, demonstrating that lack of τm5U results in pathological consequences. Taurine starvation resulted in downregulation of τm5U frequency in cultured cells and animal tissues (cat liver and flatfish). Strikingly, 5-carboxymethylaminomethyluridine (cmnm5U), in which the taurine moiety of τm5U is replaced with glycine, was detected in mt-tRNAs from taurine-depleted cells. These results indicate that tRNA modifications are dynamically regulated via sensing of intracellular metabolites under physiological condition.


Assuntos
RNA de Transferência/metabolismo , Taurina/deficiência , Uridina/análogos & derivados , Animais , Proteínas de Transporte/fisiologia , Gatos , Pré-Escolar , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/fisiologia , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , RNA de Transferência/química , Proteínas de Ligação a RNA , Uridina/biossíntese
15.
Biochem Biophys Res Commun ; 494(3-4): 736-741, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-28867184

RESUMO

We determined the crystal structure of a LysM module from Pteris ryukyuensis chitinase-A (PrLysM2) at a resolution of 1.8 Å. Structural and binding analysis of PrLysM2 indicated that this module recognizes chitin oligosaccharides in a shallow groove comprised of five sugar-binding subsites on one side of the molecule. The free energy changes (ΔGr°) for binding of (GlcNAc)6, (GlcNAc)5, and (GlcNAc)4 to PrLysM2 were determined to be -5.4, -5,4 and -4.6 kcal mol-1, respectively, by ITC. Thermodynamic dissection of the binding energetics of (GlcNAc)6 revealed that the driving force is the enthalpy change (ΔHr° = -11.7 ± 0.2 kcal/mol) and the solvation entropy change (-TΔSsolv° = -5.9 ± 0.6 kcal/mol). This is the first description of thermodynamic signatures of a chitin oligosaccharide binding to a LysM module.


Assuntos
Quitina/química , Quitina/ultraestrutura , Quitinases/química , Quitinases/ultraestrutura , Oligossacarídeos/química , Oligossacarídeos/ultraestrutura , Pteris/enzimologia , Sítios de Ligação , Lisina/química , Modelos Químicos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
16.
Plant Mol Biol ; 93(1-2): 97-108, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27807643

RESUMO

KEY MESSAGE: The chitinase-mediated defense system in higher plants has been intensively studied from physiological and structural viewpoints. However, the defense system in the most primitive plant species, such as green algae, has not yet been elucidated in details. In this study, we solved the crystal structure of a family CBM-50 LysM module attached to the N-terminus of chitinase from Volvox carteri, and successfully analyzed its chitin-binding ability by NMR spectroscopy and isothermal titration calorimetry. Trp96 of the LysM module appeared to make a CH-π stacking interaction with the reducing end sugar residue of the ligand. We believe the data included in this manuscript provide novel insights into the molecular basis of chitinase-mediated defense system in green algae. A chitinase from the multicellular green alga, Volvox carteri, contains two N-terminal lysin motifs (VcLysM1 and VcLysM2), that belong to the CBM-50 family, in addition to a catalytic domain. We produced a recombinant protein of VcLysM2 in order to examine its structure and function. The X-ray crystal structure of VcLysM2 was successfully solved at a resolution of 1.2 Å, and revealed that the protein adopts the ßααß fold typical of members belonging to the CBM-50 family. NMR spectra of 13C- and 15N-labeled proteins were analyzed in order to completely assign the main chain resonances of the 1H,15N-HSQC spectrum in a sequential manner. NMR-based titration experiments of chitin oligosaccharides, (GlcNAc)n (n = 3-6), revealed the ligand-binding site of VcLysM2, in which the Trp96 side chain appeared to interact with the terminal GlcNAc residue of the ligand. We then mutated Trp96 to alanine (VcLysM2-W96A), and the mutant protein was characterized. Based on isothermal titration calorimetry, the affinity of (GlcNAc)6 toward VcLysM2 (-6.9 kcal/mol) was found to be markedly higher than that of (GlcNAc)3 (-4.1 kcal/mol), whereas the difference in affinities between (GlcNAc)6 and (GlcNAc)3 in VcLysM2-W96A (-5.1 and -4.0 kcal/mol, respectively) was only moderate. This suggests that the Trp96 side chain of VcLysM2 interacts with the sugar residue of (GlcNAc)6 not with (GlcNAc)3. VcLysM2 appears to preferentially bind (GlcNAc)n with longer chains and plays a major role in the degradation of the chitinous components of enzyme targets.


Assuntos
Quitinases/química , Proteínas de Plantas/química , Volvox/enzimologia , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes de Fusão/química , Análise de Sequência de Proteína
17.
Biochem J ; 473(8): 1085-95, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936968

RESUMO

An antifungal chitosanase/glucanase isolated from the soil bacterium Paenibacillus sp. IK-5 has two CBM32 chitosan-binding modules (DD1 and DD2) linked in tandem at the C-terminus. In order to obtain insights into the mechanism of chitosan recognition, the structures of DD1 and DD2 were solved by NMR spectroscopy and crystallography. DD1 and DD2 both adopted a ß-sandwich fold with several loops in solution as well as in crystals. On the basis of chemical shift perturbations in(1)H-(15)N-HSQC resonances, the chitosan tetramer (GlcN)4 was found to bind to the loop region extruded from the core ß-sandwich of DD1 and DD2. The binding site defined by NMR in solution was consistent with the crystal structure of DD2 in complex with (GlcN)3, in which the bound (GlcN)3 stood upright on its non-reducing end at the binding site. Glu(14)of DD2 appeared to make an electrostatic interaction with the amino group of the non-reducing end GlcN, and Arg(31), Tyr(36)and Glu(61)formed several hydrogen bonds predominantly with the non-reducing end GlcN. No interaction was detected with the reducing end GlcN. Since Tyr(36)of DD2 is replaced by glutamic acid in DD1, the mutation of Tyr(36)to glutamic acid was conducted in DD2 (DD2-Y36E), and the reverse mutation was conducted in DD1 (DD1-E36Y). Ligand-binding experiments using the mutant proteins revealed that this substitution of the 36th amino acid differentiates the binding properties of DD1 and DD2, probably enhancing total affinity of the chitosanase/glucanase toward the fungal cell wall.


Assuntos
Proteínas de Bactérias/metabolismo , Quitosana/metabolismo , Glicosídeo Hidrolases/metabolismo , Paenibacillus , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/fisiologia , Quitosana/química , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Especificidade por Substrato/fisiologia
18.
FEBS Lett ; 589(18): 2327-33, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26216755

RESUMO

Transglycosylation (TG) activity of a family GH18 chitinase from the cycad, Cycas revoluta, (CrChiA) was modulated by removing or introducing a tryptophan side chain. The removal from subsite +3 through mutation of Trp168 to alanine suppressed TG activity, while introduction into subsite +1 through mutation of Gly77 to tryptophan (CrChiA-G77W) enhanced TG activity. The crystal structures of an inactive double mutant of CrChiA (CrChiA-G77W/E119Q) with one or two N-acetylglucosamine residues occupying subsites +1 or +1/+2, respectively, revealed that the Trp77 side chain was oriented toward +1 GlcNAc to be stacked with it face-to-face, but rotated away from subsite +1 in the absence of GlcNAc at the subsite. Aromatic residues in the aglycon-binding site are key determinants of TG activity of GH18 chitinases.


Assuntos
Quitinases/química , Quitinases/metabolismo , Triptofano , Domínio Catalítico , Quitina/metabolismo , Quitinases/genética , Cristalografia por Raios X , Cycas/enzimologia , Glicosilação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação
19.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 735-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057804

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNA (crRNA) and CRISPR-associated (Cas) proteins constitute a prokaryotic adaptive immune system (CRISPR-Cas system) that targets and degrades invading genetic elements. The type III-B CRISPR-Cas Cmr complex, composed of the six Cas proteins (Cmr1-Cmr6) and a crRNA, captures and cleaves RNA complementary to the crRNA guide sequence. Here, a Cmr1-deficient functional Cmr (CmrΔ1) complex composed of Pyrococcus furiosus Cmr2-Cmr3, Archaeoglobus fulgidus Cmr4-Cmr5-Cmr6 and the 39-mer P. furiosus 7.01-crRNA was prepared. The CmrΔ1 complex was cocrystallized with single-stranded DNA (ssDNA) complementary to the crRNA guide by the vapour-diffusion method. The crystals diffracted to 2.1 Å resolution using synchrotron radiation at the Photon Factory. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 75.5, b = 76.2, c = 139.2 Å, α = 90.3, ß = 104.8, γ = 118.6°. The asymmetric unit of the crystals is expected to contain one CmrΔ1-ssDNA complex, with a Matthews coefficient of 2.03 Å(3) Da(-1) and a solvent content of 39.5%.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Pyrococcus furiosus/química , Interferência de RNA , RNA Guia de Cinetoplastídeos/química , Proteínas Arqueais/genética , Archaeoglobus fulgidus/metabolismo , Sistemas CRISPR-Cas/genética , Cristalização , Cristalografia por Raios X , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Pyrococcus furiosus/metabolismo , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Planta ; 242(4): 895-907, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25998529

RESUMO

MAIN CONCLUSION: We first solved the crystal structure of class III catalytic domain of a chitinase from fern (PrChiA-cat), and found a structural difference between PrChiA-cat and hevamine. PrChiA-cat was found to have reduced affinities to chitin oligosaccharides and allosamidin. Plant class III chitinases are subdivided into enzymes with three disulfide bonds and those without disulfide bonds. We here referred to the former enzymes as class IIIa chitinases and the latter as class IIIb chitinases. In this study, we solved the crystal structure of the class IIIb catalytic domain of a chitinase from the fern Pteris ryukyuensis (PrChiA-cat), and compared it with that of hevamine, a class IIIa chitinase from Hevea brasiliensis. PrChiA-cat was found to adopt an (α/ß)8 fold typical of GH18 chitinases in a similar manner to that of hevamine. However, PrChiA-cat also had two large loops that extruded from the catalytic site, and the corresponding loops in hevamine were markedly smaller than those of PrChiA-cat. An HPLC analysis of the enzymatic products revealed that the mode of action of PrChiA-cat toward chitin oligosaccharides, (GlcNAc) n (n = 4-6), differed from those of hevamine and the other class IIIa chitinases. The binding affinities of (GlcNAc)3 and (GlcNAc)4 toward the inactive mutant of PrChiA-cat were determined by isothermal titration calorimetry, and were markedly lower than those toward other members of the GH18 family. The affinity and the inhibitory activity of allosamidin toward PrChiA-cat were also lower than those toward the GH18 chitinases investigated to date. Several hydrogen bonds found in the crystal structure of hevamine-allosamidin complex were missing in the modeled structure of PrChiA-cat-allosamidin complex. The structural findings for PrChiA-cat successfully interpreted the functional data presented.


Assuntos
Quitinases/metabolismo , Dissulfetos/química , Pteris/enzimologia , Sequência de Aminoácidos , Calorimetria , Quitinases/antagonistas & inibidores , Quitinases/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA