Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845017

RESUMO

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Assuntos
Conservação dos Recursos Naturais , Florestas , Modelos Biológicos , Clima Tropical
2.
An Acad Bras Cienc ; 92(suppl 2): e20190058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146275

RESUMO

Elevation creates a variety of physical conditions in a relatively short distance, which makes mountains suitable for studying the effects of climate change on biodiversity. We investigated the importance of climate and vegetation for the distribution of butterflies from 800 to 1400 m elevation. We sampled butterflies, and woody and rosette plants and measured air temperature and humidity, wind speed and gust, and solar radiation. We partitioned diversity to assess the processes underlying community shifts across altitudes - species loss versus replacement. We assessed the strength of the association among butterfly, vegetation, and climate. Butterfly richness and abundance decreased with altitude, and species composition changed along the elevation. Changes in butterfly composition with altitude were mainly through species replacement and by abundance increases in some species being compensated by decreases in others. Since the floristic diversity decreased with altitude due to soil conditions, and butterflies are closely related to their host plants, this could explain species replacement with altitude. Overall, we found a stronger association of butterfly community with vegetation than climate, but plant community and climate were also strongly associated between them. Butterfly richness was more strongly associated with plant richness than with temperature, while the reverse was true for butterfly abundance, which was more strongly associated with temperature than with plant richness. We must consider the complementary roles of resource and conditions in species distribution.


Assuntos
Borboletas , Altitude , Animais , Biodiversidade , Mudança Climática , Ecossistema , Solo
3.
Sci Adv ; 2(5): e1501639, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386528

RESUMO

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Ecossistema , Florestas , Biodiversidade , Biomassa , Conservação dos Recursos Naturais , Fazendas , Geografia , América Latina , Clima Tropical
4.
Nature ; 530(7589): 211-4, 2016 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840632

RESUMO

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.


Assuntos
Biomassa , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Carbono/metabolismo , Ciclo do Carbono , Sequestro de Carbono , Ecologia , Umidade , América Latina , Chuva , Fatores de Tempo , Árvores/metabolismo
5.
Rev. bras. farmacogn ; 23(4): 614-620, Aug. 2013. ilus, graf
Artigo em Inglês | LILACS | ID: lil-686647

RESUMO

The chromatographic fractionation of the Mauritia flexuosa L. f., Arecaceae, leaves extract, a plant known by the name of buriti palm tree, resulted in the isolation of six flavonoids: tricin-7-O-rutinoside, apigenin-6-C-arabinoside, 8-C-glucoside (isoschaftoside), kaempferol-3-O-rutinoside (nicotiflorine), quercetin-3-O-rutinoside (rutin), luteolin-8-C-glucoside (orientin) and luteolin-6-C-glucoside (isoorientin). The flavonoids were found out and previously reported as constituents of the Arecaceae family plants, but the occurrence of C-glucoside flavonoids, in the species being analyzed, is described for the first time on this study. The structural elucidations of all of the isolated compounds were performed by means of the comparison of their spectral data (¹H and 13C NMR, UV and ESI-MS) with those ones of the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA