Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172720, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688373

RESUMO

An environmental disaster caused by the rupture of a mining tailings dam has impacted a large area of the Rio Doce watershed in the Brazilian Atlantic Forest, resulting in unprecedented damage at spatial and temporal scales. The Atlantic Forest is one of the world's most important biodiversity hotspots. A long history of land use conversion has resulted in a highly fragmented landscape. Despite numerous restoration initiatives, these efforts have often biased criteria and use limited species assemblages. We conducted a comprehensive synthesis of the plant community in riparian forests along the Rio Doce watershed. Our work detailed vegetation composition (tree and sapling strata) and examined its relationship with edaphic and landscape factors, aiming to inform restoration projects with scientifically robust knowledge. A total of 4906 individuals from the tree strata and 4565 individuals from the sapling strata were recorded, representing a total of 1192 species from 75 families. Only 0.8% of the tree species and 0.5% of the sapling species occurred in all sampled sectors, with over 84% of the species occurring in a single watershed sector for both strata. We observed a high species heterogeneity modulated by turnover (92.3% in the tree, and 92.7% in the sapling strata) among sites. Overall, our research revealed a gradient of soil fertility influencing species composition across different strata. Additionally, we discovered that preserved landscapes had a positive impact on species diversity within both strata. The species exclusivity in the sampled sites and the high turnover rate imply the need to consider multiple reference ecosystems when restoring the watershed to reduce the risk of biotic homogenization. Finally, the reference ecosystems defined here serve as a basis for the selection of locally particular species in the implementation of restoration projects that aim to improve biodiversity, ecosystem services, and water security.


Assuntos
Biodiversidade , Recuperação e Remediação Ambiental , Florestas , Brasil , Recuperação e Remediação Ambiental/métodos , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Árvores , Rios
2.
Protoplasma ; 261(3): 425-445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37963977

RESUMO

The germination and post-seminal development of Arecaceae are notably complex due to the microscopic dimensions of the embryonic axis, the occurrence of dormancy, and the diversity of reserve compounds. In-depth information on this subject is still limited, especially in terms of the basal sub-family Calamoideae. Mauritiella armata is widely distributed in the Amazon region and is considered a key species in flooded ecosystems (veredas) in the Cerrado biome. We sought to describe histogenesis and reserve compound dynamics during the germination of M. armata, as well as the changes in incubated seeds over time. Seeds with their operculum removed (the structure that limits embryonic growth) were evaluated during germination using standard methods of histology, histochemistry, and electron microscopy. Evaluations were also performed on intact seeds incubated for 180 days. The embryos show characteristics associated with recalcitrant seeds of Arecaceae: a high water content (>80%), differentiated vessel elements, and reduced lipid reserves. Both the embryo and endosperm store abundant reserves of proteins, neutral carbohydrates, and pectins. The completion of germination involves cell divisions and expansions in specific regions of the embryo, in addition to the mobilization of embryonic and endospermic reserves through symplastic and apoplastic flows. Intact seeds show dormancy (not germinating for 180 days), but exhibit continuous development associated with cell growth, differentiation, and reserve mobilization. The anatomical and histochemical characters of M. armata seeds indicate an association between recalcitrance and dormancy related to the species' adaptation to flooded environments.


Assuntos
Arecaceae , Ecossistema , Sementes , Endosperma , Ciclo Celular , Germinação , Dormência de Plantas
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210074, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373919

RESUMO

The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Solo , Solo/química , Argila , Florestas , Carbono
4.
Microsc Microanal ; : 1-12, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35314015

RESUMO

The objective of this work was to characterize the ontogenesis of Protium spruceanum secretory ducts, to evaluate the effects of seasonality on that process, and to characterize the chemical nature of the resin. Morphometric, anatomical, micromorphometric, histochemical, and ultrastructural evaluations of shoot apexes and chemical analyses of the resin were performed. The ducts of schizolysigenous origin are distributed in the primary and secondary phloem. The subsecretory tissue is meristematic and can restore the secretory epithelium. Secretory epithelial cells have wall thickening resembling that of the Casparian strip that regulates secretion reflux. The main resin compounds are pentacyclic triterpenoids, α- and ß-amyrins, and α- and ß-amyrenones, which are reported here for the first time for this species. The presence of electron-dense and electron-opaque structures, in the secretory epithelial cells, are compatible with the triterpenes and mucilage identified in the resin. Rising temperatures, rainfall, and increasing day length induce the formation of ducts in the vascular cambium throughout Spring/Summer. The abundant production of resin rich in pentacyclic triterpenes indicates the potential use of the species for medicinal and cosmetic purposes. The understanding that secretory processes are concentrated during the Spring/Summer seasons will contribute to the definition of resin extraction management strategies.

5.
Chem Biodivers ; 19(3): e202100788, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146890

RESUMO

Mauritia flexuosa Linnaeus filius (buriti or aguage; Arecaceae) is a palm used by traditional medicine in Brazil to treat dysentery and diarrhea. Our group showed that the soluble dichloromethane (CH2 Cl2 ) fraction from EtOH extract from M. flexuosa stems inhibited the growth of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) and it is rich in phenolic compounds. This study aimed to isolate new phenolic compounds from CH2 Cl2 fraction from M. flexuosa stems with in vitro antibacterial activity. The crude CH2 Cl2 fraction was fractionated by gel permeation chromatography (GPC) followed by semi-preparative RP-HPLC. The antibacterial activity was evaluated using the broth microdilution method against MSSA (ATCC 29213) and MRSA (clinical isolate 155). All compounds were also tested against Gram-negative (Escherichia coli; ATCC 35218) bacteria and two fungi species (Candida albicans; ATCC 14053 and Trichophyton rubrum; ATCC MYA 4438). The chemical structures of isolated compounds were determined by analysis and comparison with literature data of their NMR and HRMS spectra and optical activity. The chemical investigation yielded seven aromatic compounds, of which four, (2S,15S)-2,15-dimethyl-2,15-dioxa-1,8(1,4)-dibenzenacyclotetradecaphane (1), (2S,5S)-1-(4-hydroxyphenyl)hexane-2,5-diol (3), bruguierol E (4), and buritin (5) were previously unreported and three are known compounds identified as 6-(4'-hydroxyphenyl) hexan-2-one (2), (+)-(2R,3R)-dihydrokaempferol (6), and (+)-(2R)-naringenin (7). Compounds 1 and 7 showed antibacterial activity against MRSA and MSSA with minimum inhibitory concentrations (MICs) of between 62.5 and 31.3 µg/mL, respectively. Our preliminary findings support that CH2 Cl2 fraction from buriti, a typical species of flooded areas of Brazilian savanna, and its aromatic phenolic compounds are active against MSSA and MRSA contributing with understanding about the traditional use of this species.


Assuntos
Arecaceae , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Arecaceae/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus
6.
Microsc Microanal ; 26(3): 609-621, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32495729

RESUMO

Mauritia flexuosa palms inhabit wetland environments in the dry, seasonal Brazilian savanna (Cerrado) and produce mucilaginous secretions in the stem and petiole that have a medicinal value. The present study sought to characterize the chemical natures of those secretions and to describe the anatomical structures involved in their synthesis. Chemical analyzes of the secretions, anatomical, histochemical analyses, and electron microscopy studies were performed on the roots, stipes, petioles, and leaf blades. Stipe and petiole secretions are similar, and rich in cell wall polysaccharides and pectic compounds such as rhamnose, arabinose, xylose, mannose, galactose, and glucose, which are hydrophilic largely due to their hydroxyl and carboxylate groups. Mucilaginous secretions accumulate in the lumens of vessel elements and sclerenchyma fibers of the root, stipe, petiole, and foliar veins; their synthesis involves cell wall loosening and the activities of dictyosomes. The outer faces of the cell walls of the parenchyma tissue in the mesophyll expand to form pockets that rupture and release pectocellulose substances into the intercellular spaces. The presence of mucilage in the xylem, extending from the roots to the leaf veins and continuous with the leaf apoplast, and sub-stomatal chambers suggest a strategy for plant water economy.


Assuntos
Arecaceae/metabolismo , Secreções Corporais/fisiologia , Folhas de Planta/citologia , Polissacarídeos/metabolismo , Áreas Alagadas , Xilema/citologia , Arabinose , Brasil , Parede Celular , Galactose , Glucose , Manose , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Ramnose , Xilema/metabolismo , Xilose
7.
Protoplasma ; 256(5): 1299-1316, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31049757

RESUMO

The cotyledonary petiole (CP) completely envelops the embryo axis during embryogenesis in Arecaceae. There is little information available, however, on the roles of that structure in seed germination and initial seedling development-crucial plant life cycle phases. The study therefore sought to evaluate the roles of CP in the germination and post-seminal development of the recalcitrant seeds of Mauritia flexuosa, an ecologically and economically important neotropical palm. The CP and the embryo/vegetative axis were evaluated during germination and initial seedling development using standard morphological, anatomical, histochemical, and ultrastructural methodologies. Evaluations of dormant seeds incubated for 60 days were also performed. The CP (a) promotes seedling protrusion in the germination, extending the embryo axis outside the seed; (b) protects the vegetative axis through the development of coating rich in phenolic compounds and lignin; (c) participates in reserve translocation, with the conversion of its own proteinaceous/mucilaginous reserves into transitional starch, as well as acting in the transport of endospermic reserves; (d) favors aeration, with the formation of pathways among stomata, substomatal chambers, and intercellular spaces; (e) controls seedling morphogenesis by modulating the curvature of the vegetative axis; and (f) contributes to overcoming seed bank dormancy through cytological alterations (protein synthesis and mitochondrial proliferation). The cotyledonary petiole of palms is a unique and multifunctional structure among angiosperms, with crucial roles in germination and seedling establishment.


Assuntos
Cotilédone/química , Germinação/genética , Reguladores de Crescimento de Plantas/metabolismo , Plântula/química , Dormência de Plantas
8.
Nat Ecol Evol ; 2(7): 1104-1111, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807995

RESUMO

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.


Assuntos
Fabaceae/crescimento & desenvolvimento , Florestas , Chuva , Árvores/crescimento & desenvolvimento , América Central , Densidade Demográfica , Porto Rico , América do Sul
9.
Trop Anim Health Prod ; 47(7): 1321-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26085457

RESUMO

Plant species naturally selected by sheep grazing in the Cerrado region of Brazil were assessed in vitro for activity against Haemonchus contortus. One year of observations showed the plant families in the region exhibiting greatest richness to be Fabaceae, Rubiaceae, Malpighiaceae, Bignoniaceae, Myrtaceae, and Annonaceae. Nine species commonly selected by grazing sheep showed variation in the selectivity index with respect to the dry and rainy seasons. Coproculture was conducted in five replicates of 11 treatments: ivermectin, distilled water, or dehydrated leaves of nine selected plant species administered at 333.3 mg g(-1) fecal culture. The dried powder of Piptadenia viridiflora and Ximenia americana leaves significantly reduced the number of infective larvae compared to the distilled water control. These species showed efficacy of over 85 % despite low concentrations of proanthocyanidin. High-performance liquid chromatography analyses of extracts of these plants showed major peaks of UV spectra characteristic of flavonoids. Those naturally selected plant species with high antihelminthic efficacy show promise for use in diet as an alternative control of H. contortus in sheep.


Assuntos
Ração Animal , Criação de Animais Domésticos , Anti-Helmínticos/farmacologia , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Fitoterapia , Poaceae , Doenças dos Ovinos/tratamento farmacológico , Animais , Anti-Helmínticos/uso terapêutico , Brasil , Hemoncose/tratamento farmacológico , Larva/efeitos dos fármacos , Masculino , Óvulo/efeitos dos fármacos , Folhas de Planta , Estações do Ano , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA