Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 93, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354523

RESUMO

Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.


Assuntos
RNA não Traduzido , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Tolerância a Radiação/genética , RNA não Traduzido/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia
2.
J Mol Med (Berl) ; 102(9): 1089-1100, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39042290

RESUMO

MiRNAs, a class of non-coding RNA molecules, have emerged as critical modulators of telomere length and telomerase activity by finely tuning the expression of target genes (and not gene targets) within signaling pathways involved in telomere homeostasis. The primary objective of this systematic review was to compile and synthesize the existing body of knowledge on the role, association, and involvement of miRNAs in telomere length. Additionally, the review explored the regulation, function, and activation mechanism of the human telomerase reverse transcriptase (hTERT) gene and telomerase activity in tumor cells. A comprehensive analysis of 47 selected articles revealed 40 distinct miRNAs involved in these processes. These miRNAs were shown to exert their function, in both clinical cases and cell line models, either directly or indirectly, regulating hTERT and telomerase activity through distinct molecular mechanisms. The regulatory roles of these miRNAs significantly affected major cancer phenotypes, with outcomes largely dependent on the tissue type and the cellular actions within the tumor cells, whereby they functioned as oncogenes or tumor suppressors. These findings strongly support the pivotal role of miRNAs in modulating telomere length and telomerase activity, thereby contributing to the intricate and complex regulation of telomere homeostasis in tumor cells. Moreover, they emphasize the potential of targeting miRNAs and key regulatory genes as therapeutic strategies to disrupt cancer cell growth and promote senescence, offering promising avenues for novel cancer treatments.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias , Telomerase , Homeostase do Telômero , Telômero , Humanos , Telomerase/genética , Telomerase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Homeostase do Telômero/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Telômero/metabolismo , Telômero/genética , Animais
3.
Life Sci ; 336: 122332, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070862

RESUMO

Breast cancer (BC), a heterogeneous group of diseases, is the most frequent type and the leading cause of cancer-related death among women worldwide. Tumor heterogeneity directly impacts cancer progression and treatment, as evidenced by the patients´ diverse prognosis and treatment responses across the distinct molecular subtypes. Triple-negative breast cancer (TNBC), which accounts for 10-20% of all diagnosed BC cases, is an aggressive BC subtype with a challenging prognosis. Current treatment options include systemic chemotherapy and/or target therapies based on PARP and PD-L1 inhibitors for eligible patients. MicroRNAs (miRNAs) are important regulatory non-coding RNAs (ncRNAs) in TNBC tumorigenesis. These molecules are present both intracellularly and released into biofluids, packaged into extracellular vesicles (EVs). Emerging evidence indicates that EVs-associated miRNAs (EVs-miRNAs), transferred from parental to recipient cells, are key mediators of cell-to-cell communication. Considering their stability and abundance in several biofluids, these molecules may reflect the epigenomic composition of their tumors of origin and contribute to mediate tumorigenesis, similar to their intracellular counterparts. This review provides the current knowledge on EVs-miRNAs in the TNBC subtype, focusing on their role in regulating mRNA targets involved in tumor phenotypes and their clinical relevance as promising biomarkers in liquid biopsies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Relevância Clínica , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Carcinogênese , Biologia , Biomarcadores Tumorais/genética
4.
Biomedicines ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979672

RESUMO

MicroRNAs (miRNAs) are involved in the regulation of mitochondrial function and homeostasis, and in the modulation of cell metabolism, by targeting known oncogenes and tumor suppressor genes of metabolic-related signaling pathways involved in the hallmarks of cancer. This systematic review focuses on articles describing the role, association, and/or involvement of miRNAs in regulating the mitochondrial function and metabolic reprogramming of cancer cells. Following the PRISMA guidelines, the articles reviewed were published from January 2010 to September 2022, with the search terms "mitochondrial microRNA" and its synonyms (mitochondrial microRNA, mitochondrial miRNA, mito microRNA, or mitomiR), "reprogramming metabolism," and "cancer" in the title or abstract). Thirty-six original research articles were selected, revealing 51 miRNAs with altered expression in 12 cancers: bladder, breast, cervical, colon, colorectal, liver, lung, melanoma, osteosarcoma, pancreatic, prostate, and tongue. The actions of miRNAs and their corresponding target genes have been reported mainly in cell metabolic processes, mitochondrial dynamics, mitophagy, apoptosis, redox signaling, and resistance to chemotherapeutic agents. Altogether, these studies support the role of miRNAs in the metabolic reprogramming hallmark of cancer cells and highlight their potential as predictive molecular markers of treatment response and/or targets that can be used for therapeutic intervention.

5.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565284

RESUMO

MiR-150-5p is frequently deregulated in cancer, with expression and mode of action varying according to the tumor type. Here, we investigated the expression levels and role of miR-150-5p in the aggressive breast cancer subtype triple-negative breast cancer (TNBC). MiR-150-5p expression levels were analyzed in tissue samples from 113 patients with invasive breast cancer (56 TNBC and 57 non-TNBC) and 41 adjacent non-tumor tissues (ANT). Overexpression of miR-150-5p was observed in tumor tissues compared with ANT tissues and in TNBC compared with non-TNBC tissues. MiR-150-5p expression levels were significantly associated with high tumor grades and the Caucasian ethnicity. Interestingly, high miR-150-5p levels were associated with prolonged overall survival. Manipulation of miR-150-5p expression in TNBC cells modulated cell proliferation, clonogenicity, migration, and drug resistance. Manipulation of miR-150-5p expression also resulted in altered expression of its mRNA targets, including epithelial-to-mesenchymal transition markers, MYB, and members of the SRC pathway. These findings suggest that miR-150-5p is overexpressed in TNBC and contributes to the aggressiveness of TNBC cells in vitro.

6.
Endocr Connect ; 9(12): 1212-1220, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33112833

RESUMO

OBJECTIVE: Adaptive changes in DHEA and sulfated-DHEA (DHEAS) production from adrenal zona reticularis (ZR) have been observed in normal and pathological conditions. Here we used three different cohorts to assess timing differences in DHEAS blood level changes and characterize the relationship between early blood DHEAS reduction and cell number changes in women ZR. MATERIALS AND METHODS: DHEAS plasma samples (n = 463) were analyzed in 166 healthy prepubertal girls before pubarche (<9 years) and 324 serum samples from 268 adult females (31.9-83.8 years) without conditions affecting steroidogenesis. Guided by DHEAS blood levels reduction rate, we selected the age range for ZR cell counting using DHEA/DHEAS and phosphatase and tensin homolog (PTEN), tumor suppressor and cell stress marker, immunostaining, and hematoxylin stained nuclei of 14 post-mortem adrenal glands. RESULTS: We confirmed that overweight girls exhibited higher and earlier DHEAS levels and no difference was found compared with the average European and South American girls with a similar body mass index (BMI). Adrenopause onset threshold (AOT) defined as DHEAS blood levels <2040 nmol/L was identified in >35% of the females >40 years old and associated with significantly reduced ZR cell number (based on PTEN and hematoxylin signals). ZR cell loss may in part account for lower DHEA/DHEAS expression, but most cells remain alive with lower DHEA/DHEAS biosynthesis. CONCLUSION: The timely relation between significant reduction of blood DHEAS levels and decreased ZR cell number at the beginning of the 40s suggests that adrenopause is an additional burden for a significant number of middle-aged women, and may become an emergent problem associated with further sex steroids reduction during the menopausal transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA