Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Methods ; 231: 94-102, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306218

RESUMO

It has been suggested that reduced contact with microbiota from the natural environment contributes to the rising incidence of immune-mediated inflammatory disorders (IMIDs) in western, highly urbanized societies. In line with this, we have previously shown that exposure to environmental microbiota in the form of a blend comprising of soil and plant-based material (biodiversity blend; BDB) enhances the diversity of human commensal microbiota and promotes immunoregulation that may be associated with a reduced risk for IMIDs. To provide a framework for future preclinical studies and clinical trials, this study describes how the preparation of BDB was standardized, its microbial content analysed and safety assessments performed. Multiple batches of BDB were manufactured and microbial composition analysed using 16S rRNA gene sequencing. We observed a consistently high alpha diversity and relative abundance of bacteria normally found in soil and vegetation. We also found that inactivation of BDB by autoclaving effectively inactivates human and murine bacteria, viruses and parasites. Finally, we demonstrate that experimental mice prone to develop IMIDs (non-obese diabetic, NOD, mouse model) can be exposed to BDB without causing adverse effects on animal health and welfare. Our study provides insights into a potentially safe, sustainable, and cost-effective approach for simulating exposure to natural microbiota, which could have substantial impacts on health and socio-economic factors.

2.
Sci Rep ; 14(1): 18573, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127736

RESUMO

A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-ß plasma levels and TGF-ß decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.


Assuntos
Imunidade Celular , Leucócitos Mononucleares , Vacinas Pneumocócicas , Pele , Humanos , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Masculino , Feminino , Pele/imunologia , Pele/microbiologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Adulto , Microbiologia do Solo , Citocinas/metabolismo , Citocinas/sangue , Microbioma Gastrointestinal/imunologia , Pessoa de Meia-Idade , Vacinação , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/imunologia , Microbiota/imunologia
3.
Environ Int ; 187: 108705, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688234

RESUMO

According to the hygiene and biodiversity hypotheses, frequent exposure to environmental microbiota, especially through soil contact, diversifies commensal microbiota, enhances immune modulation, and ultimately lowers the risk of immune-mediated diseases. Here we test the underlying assumption of the hygiene and biodiversity hypotheses by instructing volunteers to grow edible plants indoors during the winter season when natural exposure to environmental microbiota is low. The one-month randomized, placebo-controlled double-blind trial consisted of two treatments: participants received either microbially diverse growing medium or visually similar but microbially poor growing medium. Skin microbiota and a panel of seven immune markers were analyzed in the beginning of the trial and after one month. The diversity of five bacterial phyla (Bacteroidetes, Planctomycetes, Proteobacteria, Cyanobacteria, and Verrucomicrobia) and one class (Bacteroidia) increased on the skin of participants in the intervention group while no changes were observed in the placebo group. The number of nodes and edges in the co-occurrence networks of the skin bacteria increased on average three times more in the intervention group than in the placebo group. The plasma levels of the immunomodulatory cytokine interleukin 10 (IL-10) increased in the intervention group when compared with the placebo group. A similar trend was observed in the interleukin 17A (IL-17A) levels and in the IL-10:IL-17A ratios. Participants in both groups reported high satisfaction and adherence to the trial. The current study provides evidence in support of the core assumption of the hygiene and biodiversity hypotheses of immune-mediated diseases. Indoor urban gardening offers a meaningful and convenient approach for increasing year-round exposure to environmental microbiota, paving the way for other prophylactic practices that might help prevent immune-mediated diseases.


Assuntos
Jardinagem , Microbiota , Pele , Humanos , Método Duplo-Cego , Pele/microbiologia , Adulto , Masculino , Feminino , Interleucina-10 , Bactérias/classificação , Interleucina-17 , Adulto Jovem , Biodiversidade , Pessoa de Meia-Idade
4.
BMC Immunol ; 24(1): 29, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689649

RESUMO

BACKGROUND: . Lack of exposure to the natural microbial diversity of the environment has been linked to dysregulation of the immune system and numerous noncommunicable diseases, such as allergies and autoimmune disorders. Our previous studies suggest that contact with soil material, rich in naturally occurring microbes, could have a beneficial immunoregulatory impact on the immune system in mice and humans. However, differences in the immunomodulatory properties of autoclaved, sterile soil material and non-autoclaved, live soil material have not been compared earlier. RESULTS: . In this study, we exposed C57BL/6 mice to autoclaved and live soil powders that had the same rich microbiota before autoclaving. We studied the effect of the soil powders on the mouse immune system by analyzing different immune cell populations, gene expression in the gut, mesenteric lymph nodes and lung, and serum cytokines. Both autoclaved and live soil exposure were associated with changes in the immune system. The exposure to autoclaved soil resulted in higher levels of Rorγt, Inos and Foxp3 expression in the colon. The exposure to live soil was associated with elevated IFN-γ concentration in the serum. In the mesenteric lymph node, exposure to live soil reduced Gata3 and Foxp3 expression, increased the percentage of CD8 + T cells and the expression of activation marker CD80 in XCR1+SIRPα- migratory conventional dendritic cell 1 subset. CONCLUSIONS: . Our results indicate that exposure to the live and autoclaved soil powders is not toxic for mice. Exposure to live soil powder slightly skews the immune system towards type 1 direction which might be beneficial for inhibiting type 2-related inflammation. Further studies are warranted to quantify the impact of this exposure in experimental type 2 inflammation.


Assuntos
Células Dendríticas , Inflamação , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Pós , Fatores de Transcrição Forkhead
5.
J Med Virol ; 95(4): e28707, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36971180

RESUMO

This study investigated whether children with HLA-DQ-conferred risk for type 1 diabetes (T1D) have an altered immune response to the widely-used enterovirus vaccine, namely poliovirus vaccine, and whether initiation of autoimmunity to pancreatic islets modulates this response. Neutralizing antibodies induced by the inactivated poliovirus vaccine against poliovirus type 1 (Salk) were analysed as a marker of protective immunity at the age of 18 months in a prospective birth cohort. No differences were observed in antibody titers between children with and without genetic risk for T1D (odds ratio [OR] = 0.90 [0.83, 1.06], p = 0.30). In the presence of the genetic risk, no difference was observed between children with and without islet autoimmunity (OR = 1.00 [0.78, 1.28], p = 1.00). This did not change when only children with the autoimmunity before 18 months of age were included in the analyses (OR = 1.00 [0.85, 1.18], p = 1.00). No effect was observed when groups were stratified based on autoantigen specificity of the first-appearing autoantibody (IAA or GADA). The children in each comparison group were matched for sex, calendar year and month of birth, and municipality. Accordingly, we found no indication that children who are at risk to develop islet autoimmunity would have a compromised humoral immune response which could have increased their susceptibility for enterovirus infections. In addition, the proper immune response supports the idea of testing novel enterovirus vaccines for the prevention of T1D among these individuals.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Enterovirus , Ilhotas Pancreáticas , Criança , Humanos , Lactente , Anticorpos Neutralizantes , Estudos Prospectivos , Infecções por Enterovirus/prevenção & controle , Autoanticorpos , Vacina Antipólio de Vírus Inativado , Antígenos HLA-DQ/genética
6.
Data Brief ; 47: 109003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36915639

RESUMO

The metagenomic data presented in this article are related to the published research of "A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children" This database contains 16S ribosomal RNA (rRNA) metagenomics of sandbox sand and skin and gut microbiota of children in the intervention and placebo daycares. In intervention daycares, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil. In placebo daycares, children were exposed to visually similar as in intervention daycares, but microbially poor sand colored with peat. Sand, skin and gut metagenomics were analyzed at baseline and after 14 and 28 days of intervention by high throughput sequencing of bacterial 16S rRNA gene on the Illumina MiSeq platform. This dataset shows how skin bacterial community composition, including classes Gammaproteobacteria and Bacilli, changed, and how the relative abundance of over 30 bacterial genera shifted on the skin of children in the intervention treatment, while no shifts occurred in the placebo group.

7.
Ecotoxicol Environ Saf ; 242: 113900, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930838

RESUMO

BACKGROUND: According to the biodiversity hypothesis of immune-mediated diseases, lack of microbiological diversity in the everyday living environment is a core reason for dysregulation of immune tolerance and - eventually - the epidemic of immune-mediated diseases in western urban populations. Despite years of intense research, the hypothesis was never tested in a double-blinded and placebo-controlled intervention trial. OBJECTIVE: We aimed to perform the first placebo-controlled double-blinded test that investigates the effect of biodiversity on immune tolerance. METHODS: In the intervention group, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil, or in the placebo group, visually similar, but microbially poor sand colored with peat (13 participants per treatment group). Children played twice a day for 20 min in the sandbox for 14 days. Sand, skin and gut bacterial, and blood samples were taken at baseline and after 14 days. Bacterial changes were followed for 28 days. Sand, skin and gut metagenome was determined by high throughput sequencing of bacterial 16 S rRNA gene. Cytokines were measured from plasma and the frequency of blood regulatory T cells was defined as a percentage of total CD3 +CD4 + T cells. RESULTS: Bacterial richness (P < 0.001) and diversity (P < 0.05) were higher in the intervention than placebo sand. Skin bacterial community, including Gammaproteobacteria, shifted only in the intervention treatment to resemble the bacterial community in the enriched sand (P < 0.01). Mean change in plasma interleukin-10 (IL-10) concentration and IL-10 to IL-17A ratio supported immunoregulation in the intervention treatment compared to the placebo treatment (P = 0.02). IL-10 levels (P = 0.001) and IL-10 to IL-17A ratio (P = 0.02) were associated with Gammaproteobacterial community on the skin. The change in Treg frequencies was associated with the relative abundance of skin Thermoactinomycetaceae 1 (P = 0.002) and unclassified Alphaproteobacteria (P < 0.001). After 28 days, skin bacterial community still differed in the intervention treatment compared to baseline (P < 0.02). CONCLUSIONS: This is the first double-blinded placebo-controlled study to show that daily exposure to microbial biodiversity is associated with immune modulation in humans. The findings support the biodiversity hypothesis of immune-mediated diseases. We conclude that environmental microbiota may contribute to child health, and that adding microbiological diversity to everyday living environment may support immunoregulation.


Assuntos
Interleucina-10 , Interleucina-17 , Bactérias/genética , Biodiversidade , Pré-Escolar , Citocinas , Método Duplo-Cego , Humanos , Areia , Linfócitos T Reguladores
8.
Diabetologia ; 65(10): 1701-1709, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867130

RESUMO

AIMS/HYPOTHESIS: Enteroviral infection has been implicated consistently as a key environmental factor correlating with the appearance of autoimmunity and/or the presence of overt type 1 diabetes, in which pancreatic insulin-producing beta cells are destroyed by an autoimmune response. Genetic predisposition through variation in the type 1 diabetes risk gene IFIH1 (interferon induced with helicase C domain 1), which encodes the viral pattern-recognition receptor melanoma differentiation-associated protein 5 (MDA5), supports a potential link between enterovirus infection and type 1 diabetes. METHODS: We used molecular techniques to detect enterovirus RNA in peripheral blood samples (in separated cellular compartments or plasma) from two cohorts comprising 79 children or 72 adults that include individuals with and without type 1 diabetes who had multiple autoantibodies. We also used immunohistochemistry to detect the enteroviral protein VP1 in the pancreatic islets of post-mortem donors (n=43) with type 1 diabetes. RESULTS: We observed enhanced detection sensitivity when sampling the cellular compartment compared with the non-cellular compartment of peripheral blood (OR 21.69; 95% CI 3.64, 229.20; p<0.0001). In addition, we show that children with autoimmunity are more likely to test positive for enterovirus RNA than those without autoimmunity (OR 11.60; 95% CI 1.89, 126.90; p=0.0065). Furthermore, we found that individuals carrying the predisposing allele (946Thr) of the common variant in IFIH1 (rs1990760, Thr946Ala) are more likely to test positive for enterovirus in peripheral blood (OR 3.07; 95% CI 1.02, 8.58; p=0.045). In contrast, using immunohistochemistry, there was no correlation between the common variant in IFIH1 and detection of enteroviral VP1 protein in the pancreatic islets of donors with type 1 diabetes. CONCLUSIONS/INTERPRETATION: Our data indicate that, in peripheral blood, antigen-presenting cells are the predominant source of enterovirus infection, and that infection is correlated with disease stage and genetic predisposition, thereby supporting a role for enterovirus infection prior to disease onset.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Enterovirus , Insulinas , Adulto , Alelos , Autoanticorpos/metabolismo , Criança , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Enterovirus/genética , Infecções por Enterovirus/genética , Predisposição Genética para Doença , Humanos , Insulinas/genética , Insulinas/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Leucócitos Mononucleares/metabolismo , RNA
9.
Food Chem Toxicol ; 165: 113064, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561874

RESUMO

The market for ready-to eat vegetables is increasing, but unfortunately so do the numbers of food-borne illness outbreaks related to these products. A previous study has identified bacterial strains suitable for biocontrol of leafy green vegetables to reduce the exposure to pathogens in these products. As a tentative safety evaluation, five selected strains (Rhodococcus cerastii MR5x, Bacillus coagulans LMG P-32205, Bacillus coagulans LMG P-32206, Pseudomonas cedrina LMG P-32207 and Pseudomonas punonensis LMG P-32204) were individually compared for immunomodulating effects in mice and in human monocyte-derived dendritic cells (MoDCs). Mice receiving the two B. coagulans strains consistently resemble the immunological response of the normal control, and no, or low, cell activation and pro-inflammatory cytokine expression was observed in MoDCs exposed to B. coagulans strains. However, different responses were seen in the two models for the Gram-negative P. cedrina and the Gram-positive R. cerastii. Moreover, P. punonensis and B. coagulans increased the microbiota diversity in mice as seen by the Shannon-Wiener index. In conclusion, the two strains of B. coagulans showed an immunological response that indicate that they lack pathogenic abilities, thus encouraging further safety evaluation and showing great potential to be used as biocontrol agents on leafy green vegetables.


Assuntos
Doenças Transmitidas por Alimentos , Verduras , Animais , Bactérias , Células Dendríticas , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Camundongos , Folhas de Planta
10.
Immun Inflamm Dis ; 10(3): e579, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873877

RESUMO

INTRODUCTION: The hygiene hypothesis suggests that decrease in early life infections due to increased societal-level hygiene standards subjects one to allergic and autoimmune diseases. In this report, we have studied the effect of sterilized forest soil and plant-based material on mouse immune system and gut microbiome. METHODS: Inbred C57Bl/6 mice maintained in normal sterile environment were subjected to autoclaved forest soil-derived powder in their bedding for 1 h a day for 3 weeks. Immune response was measured by immune cell flow cytometry, serum cytokine enzyme-linked immunoassay (ELISA) and quantitative polymerase chain reaction (qPCR) analysis. Furthermore, the mouse gut microbiome was analyzed by sequencing. RESULTS: When compared to control mice, mice treated with soil-derived powder had decreased level of pro-inflammatory cytokines namely interleukin (IL)-17F and IL-21 in the serum. Furthermore, splenocytes from mice treated with soil-derived powder expressed less IL-1b, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF) upon cell activation. Gut microbiome appeared to be stabilized by the treatment. CONCLUSIONS: These results provide insights on the effect of biodiversity on murine immune system in sterile environment. Subjecting mice to soil-based plant and microbe structures appears to elicit immune response that could be beneficial, for example, in type 2 inflammation-related diseases, that is, allergic diseases.


Assuntos
Microbioma Gastrointestinal , Sistema Imunitário , Animais , Citocinas/imunologia , Hipótese da Higiene , Sistema Imunitário/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plantas/microbiologia , Microbiologia do Solo
11.
Environ Int ; 157: 106811, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34403882

RESUMO

BACKGROUND: In modern urban environments children have a high incidence of inflammatory disorders, including allergies, asthma, and type1 diabetes. The underlying cause of these disorders, according to the biodiversity hypothesis, is an imbalance in immune regulation caused by a weak interaction with environmental microbes. In this 2-year study, we analyzed bacterial community shifts in the soil surface in day-care centers and commensal bacteria inhabiting the mouth, skin, and gut of children. We compared two different day-care environments: standard urban day-care centers and intervention day-care centers. Yards in the latter were amended with biodiverse forest floor vegetation and sod at the beginning of the study. RESULTS: Intervention caused a long-standing increase in the relative abundance of nonpathogenic environmental mycobacteria in the surface soils. Treatment-specific shifts became evident in the community composition of Gammaproteobacteria, Negativicutes, and Bacilli, which jointly accounted for almost 40 and 50% of the taxa on the intervention day-care children's skin and in saliva, respectively. In the year-one skin swabs, richness of Alpha-, Beta-, and Gammaproteobacteria was higher, and the relative abundance of potentially pathogenic bacteria, including Haemophilus parainfluenzae, Streptococcus sp., and Veillonella sp., was lower among children in intervention day-care centers compared with children in standard day-care centers. In the gut, the relative abundance of Clostridium sensu stricto decreased, particularly among the intervention children. CONCLUSIONS: This study shows that a 2-year biodiversity intervention shapes human commensal microbiota, including taxa that have been associated with immune regulation. Results indicate that intervention enriched commensal microbiota and suppressed the potentially pathogenic bacteria on the skin. We recommend future studies that expand intervention strategies to immune response and eventually the incidence of immune-mediated diseases.


Assuntos
Microbiota , Bactérias , Biodiversidade , Criança , Creches , Humanos , Solo
12.
Diabetes Care ; 44(7): 1506-1514, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33952607

RESUMO

OBJECTIVE: Environmental microbial exposures have been implicated to protect against immune-mediated diseases such as type 1 diabetes. Our objective was to study the association of land cover around the early-life dwelling with the development of islet autoimmunity and type 1 diabetes to evaluate the role of environmental microbial biodiversity in the pathogenesis. RESEARCH DESIGN AND METHODS: Association between land cover types and the future risk of type 1 diabetes was studied by analyzing land cover types classified according to Coordination of Information on the Environment (CORINE) 2012 and 2000 data around the dwelling during the first year of life for 10,681 children genotyped for disease-associated HLA-DQ alleles and monitored from birth in the Type 1 Diabetes Prediction and Prevention (DIPP) study. Land cover was compared between children who developed type 1 diabetes (n = 271) or multiple diabetes-associated islet autoantibodies (n = 384) and children without diabetes who are negative for diabetes autoantibodies. RESULTS: Agricultural land cover around the home was inversely associated with diabetes risk (odds ratio 0.37, 95% CI 0.16-0.87, P = 0.02 within a distance of 1,500 m). The association was observed among children with the high-risk HLA genotype and among those living in the southernmost study region. Snow cover on the ground seemed to block the transfer of the microbial community indoors, leading to reduced bacterial richness and diversity indoors, which might explain the regional difference in the association. In survival models, an agricultural environment was associated with a decreased risk of multiple islet autoantibodies (hazard ratio [HR] 1.60, P = 0.008) and a decreased risk of progression from single to multiple autoantibody positivity (HR 2.07, P = 0.001) compared with an urban environment known to have lower environmental microbial diversity. CONCLUSIONS: The study suggests that exposure to an agricultural environment (comprising nonirrigated arable land, fruit trees and berry plantations, pastures, natural pastures, land principally occupied by agriculture with significant areas of natural vegetation, and agroforestry areas) early in life is inversely associated with the risk of type 1 diabetes. This association may be mediated by early exposure to environmental microbial diversity.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Autoanticorpos/genética , Autoimunidade , Criança , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Genótipo , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-33918486

RESUMO

According to the hygiene and biodiversity hypotheses, increased hygiene levels and reduced contact with biodiversity can partially explain the high prevalence of immune-mediated diseases in developed countries. A disturbed commensal microbiota, especially in the gut, has been linked to multiple immune-mediated diseases. Previous studies imply that gut microbiota composition is associated with the everyday living environment and can be modified by increasing direct physical exposure to biodiverse materials. In this pilot study, the effects of rural-second-home tourism were investigated on the gut microbiota for the first time. Rural-second-home tourism, a popular form of outdoor recreation in Northern Europe, North America, and Russia, has the potential to alter the human microbiota by increasing exposure to nature and environmental microbes. The hypotheses were that the use of rural second homes is associated with differences in the gut microbiota and that the microbiota related to health benefits are more diverse or common among the rural-second-home users. Based on 16S rRNA Illumina MiSeq sequencing of stool samples from 10 urban elderly having access and 15 lacking access to a rural second home, the first hypothesis was supported: the use of rural second homes was found to be associated with lower gut microbiota diversity and RIG-I-like receptor signaling pathway levels. The second hypothesis was not supported: health-related microbiota were not more diverse or common among the second-home users. The current study encourages further research on the possible health outcomes or causes of the observed microbiological differences. Activities and diet during second-home visits, standard of equipment, surrounding environment, and length of the visits are all postulated to play a role in determining the effects of rural-second-home tourism on the gut microbiota.


Assuntos
Microbiota , Idoso , Europa (Continente) , Finlândia , Humanos , América do Norte , Projetos Piloto , RNA Ribossômico 16S/genética , Federação Russa
14.
Am J Clin Nutr ; 113(2): 380-390, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33381802

RESUMO

BACKGROUND: Insulin-like growth factor I (IGF-I) is the most important hormonal promoter of linear growth in infants and young children. OBJECTIVES: The objectives of this study were to compare plasma IGF-I concentration in a low- compared with a high-income country and characterize biological pathways leading to reduced IGF-I concentration in children in a low-income setting. METHODS: We analyzed plasma IGF-I concentration from 716 Malawian and 80 Finnish children at 6-36 mo of age. In the Malawian children, we studied the association between IGF-I concentration and their environmental exposures; nutritional status; systemic and intestinal inflammation; malaria parasitemia and viral, bacterial, and parasitic enteric infections; as well as growth at 18 mo of age. We then conducted a pathway analysis to identify direct and indirect associations between these predictors and IGF-I concentration. RESULTS: The mean IGF-I concentrations were similar in Malawi and Finland among 6-mo-old infants. At age 18 mo, the mean ± SD concentration was almost double among the Finns compared with the Malawians [24.2 ± 11.3 compared with 12.5 ± 7.7 ng/mL, age- and sex-adjusted difference in mean (95% CI): 11.8 (9.9, 13.7) ng/mL; P < 0.01]. Among 18-mo-old Malawians, plasma IGF-I concentration was inversely associated with systemic inflammation, malaria parasitemia, and intestinal Shigella, Campylobacter, and enterovirus infection and positively associated with the children's weight-for-length z score (WLZ), female sex, maternal height, mother's education, and dry season. Seasonally, mean plasma IGF-I concentration was highest in June and July and lowest in December and January, coinciding with changes in children's length gain and preceded by ∼2 mo by the changes in their WLZ. CONCLUSIONS: The mean plasma IGF-I concentrations are similar in Malawi and Finland among 6-mo-old infants. Thereafter, mean concentrations rise markedly in Finland but not in Malawi. Systemic inflammation and clinically nonapparent infections are strongly associated with lower plasma IGF-I concentrations in Malawi through direct and indirect pathways.


Assuntos
Biomarcadores/sangue , Biomarcadores/química , Inflamação/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Pré-Escolar , Fezes/química , Finlândia , Humanos , Lactente , Malaui , Estações do Ano
15.
Chemosphere ; 265: 128965, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248729

RESUMO

There is evidence that polycyclic aromatic hydrocarbons (PAHs) and human gut microbiota are associated with the modulation of endocrine signaling pathways. Independently, studies have found associations between air pollution, land cover and commensal microbiota. We are the first to estimate the interaction between land cover categories associated with air pollution or purification, PAH levels and endocrine signaling predicted from gut metagenome among urban and rural populations. The study participants were elderly people (65-79 years); 30 lived in rural and 32 in urban areas. Semi-Permeable Membrane devices were utilized to measure air PAH concentrations as they simulate the process of bioconcentration in the fatty tissues. Land cover categories were estimated using CORINE database and geographic information system. Functional orthologues for peroxisome proliferator-activated receptor (PPAR) pathway in endocrine system were analyzed from gut bacterial metagenome with Kyoto Encyclopaedia of Genes and Genomes. High coverage of broad-leaved and mixed forests around the homes were associated with decreased PAH levels in ambient air, while gut functional orthologues for PPAR pathway increased along with these forest types. The difference between urban and rural PAH concentrations was not notable. However, some rural measurements were higher than the urban average, which was due to the use of heavy equipment on active farms. The provision of air purification by forests might be an important determining factor in the context of endocrine disruption potential of PAHs. Particularly broad-leaved forests around homes may reduce PAH levels in ambient air and balance pollution-induced disturbances within commensal gut microbiota.


Assuntos
Poluentes Atmosféricos , Microbioma Gastrointestinal , Hidrocarbonetos Policíclicos Aromáticos , Idoso , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Gases/análise , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Hidrocarbonetos Policíclicos Aromáticos/análise
16.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33055153

RESUMO

As the incidence of immune-mediated diseases has increased rapidly in developed societies, there is an unmet need for novel prophylactic practices to fight against these maladies. This study is the first human intervention trial in which urban environmental biodiversity was manipulated to examine its effects on the commensal microbiome and immunoregulation in children. We analyzed changes in the skin and gut microbiota and blood immune markers of children during a 28-day biodiversity intervention. Children in standard urban and nature-oriented daycare centers were analyzed for comparison. The intervention diversified both the environmental and skin Gammaproteobacterial communities, which, in turn, were associated with increases in plasma TGF-ß1 levels and the proportion of regulatory T cells. The plasma IL-10:IL-17A ratio increased among intervention children during the trial. Our findings suggest that biodiversity intervention enhances immunoregulatory pathways and provide an incentive for future prophylactic approaches to reduce the risk of immune-mediated diseases in urban societies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Biodiversidade , Criança , Creches , Humanos , Pele
17.
Sci Total Environ ; 713: 136707, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019041

RESUMO

Gut microbes play an essential role in the development and functioning of the human immune system. A disturbed gut microbiota composition is often associated with a number of health disorders including immune-mediated diseases. Differences in host characteristics such as ethnicity, living habit and diet have been used to explain differences in the gut microbiota composition in inter-continental comparison studies. As our previous studies imply that daily skin contact with organic gardening materials modify gut microflora, here we investigated the association between living environment and gut microbiota in a homogenous western population along an urban-rural gradient. We obtained stool samples from 48 native elderly Finns in province Häme in August and November 2015 and identified the bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. We assumed that yard vegetation and land cover classes surrounding homes explain the stool bacterial community in generalized linear mixed models. Diverse yard vegetation was associated with a reduced abundance of Clostridium sensu stricto and an increased abundance of Faecalibacterium and Prevotellaceae. The abundance of Bacteroides was positively and strongly associated with the built environment. Exclusion of animal owners did not alter the main associations. These results suggest that diverse vegetation around homes is associated with health-related changes in gut microbiota composition. Manipulation of the garden diversity, possibly jointly with urban planning, is a promising candidate for future intervention studies that aim to maintain gut homeostasis.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Bacteroides , Fezes , Humanos , RNA Ribossômico 16S
18.
Environ Int ; 132: 105069, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31400602

RESUMO

An agricultural environment and exposure to diverse environmental microbiota has been suggested to confer protection against immune-mediated disorders. As an agricultural environment may have a protective role, it is crucial to determine whether the limiting factors in the transfer of environmental microbiota indoors are the same in the agricultural and urban environments. We explored how sampling month, garden diversity and animal ownership affected the indoor-transfer of environmental microbial community. We collected litter from standardized doormats used for 2 weeks in June and August 2015 and February 2016 and identified bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. In February, the diversity and richness of the whole bacterial community and the relative abundance of environment-associated taxa were reduced, whereas human-associated taxa and genera containing opportunistic pathogens were enriched in the doormats. In summer, the relative abundances of several taxa associated previously with beneficial health effects were higher, particularly in agricultural areas. Surprisingly, the importance of vegetation on doormat microbiota was more observable in February, which may have resulted from snow cover that prevented contact with microbes in soil. Animal ownership increased the prevalence of genera Bacteroides and Acinetobacter in rural doormats. These findings underline the roles of season, living environment and lifestyle in the temporal variations in the environmental microbial community carried indoors. As reduced contact with diverse microbiota is a potential reason for immune system dysfunction, the results may have important implications in the etiology of immune-mediated, non-communicable diseases.


Assuntos
Bactérias/isolamento & purificação , Habitação/estatística & dados numéricos , Microbiota , Microbiologia do Solo , Idoso , Agricultura , Animais , Bactérias/genética , Gatos , Bovinos , Cidades , Cães , Jardins , Humanos , Plantas , RNA Ribossômico 16S/genética , Estações do Ano , Solo
19.
Acta Paediatr ; 108(10): 1833-1840, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31038225

RESUMO

AIM: Despite high pathogen burden and malnutrition in low-income settings, knowledge on relationship between asymptomatic viral or parasitic infections, nutrition and growth is insufficient. We studied these relationships in a cohort of six-month-old Malawian infants. METHODS: As part of a nutrient supplementation trial for 12 months, we documented disease symptoms of 840 participant daily and anthropometric measurements every three months. Stool specimens were collected every six months and analysed for Giardia lamblia, Cryptosporidium species and enterovirus, rotavirus, norovirus, parechovirus and rhinovirus using polymerase chain reaction (PCR). The prevalence of the microbes was compared to the children's linear growth and the dietary. RESULTS: The prevalence of the microbes was similar in every intervention group. All age groups combined, children negative for G. lamblia had a mean standard deviation (SD) of -0.01 (0.49) change in length-for-age Z-score (LAZ), compared to -0.12 (0.045) among G. lamblia positive children (difference -0.10, 95% CI -0.21 to -0.00, p = 0.047). The LAZ change difference was also statistically significant (p = 0.042) at age of 18-21 months but not at the other time points. CONCLUSION: Asymptomatic G. lamblia infection was mainly associated with growth reduction in certain three-month periods. The result refers to the chronic nature of G. lamblia infection.


Assuntos
Fezes/parasitologia , Giardia lamblia/isolamento & purificação , Giardíase/complicações , Transtornos do Crescimento/parasitologia , Infecções Assintomáticas/epidemiologia , Suplementos Nutricionais , Fezes/virologia , Feminino , Giardíase/epidemiologia , Transtornos do Crescimento/dietoterapia , Transtornos do Crescimento/virologia , Humanos , Lactente , Malaui/epidemiologia , Masculino
20.
Pediatr Infect Dis J ; 38(3): 314-316, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346370

RESUMO

BACKGROUND: Ljungan virus (LV) has not confirmed to associate with any human disease, but a possible connection with type 1 diabetes has been suggested. LV is a rodent-borne picornavirus that induces a diabetes-like condition in rodents. Approximately 30% of adults and 60% of children are seropositive in Finland. The Finnish Type 1 Diabetes Prediction and Prevention study enabled the use of very well characterized sample panels from children seroconverted to positivity for multiple islet autoantibodies during their prospective observation from birth; in addition, samples from age, sex, human leukocyte antigen (HLA), and residence area matched control children. METHODS: We analyzed LV IgG seroprevalence in 102 case children (65 had also developed type 1 diabetes), in addition to nondiabetic control children. LV and human parechovirus (HPeV) immunofluorescence assays were used to analyze LV and HPeV-specific IgG from 102 plasma samples taken at the time of islet autoantibody appearance and from 204 samples from the matched control children. RESULTS: Altogether 46.1% of the case and 50.7% of the control children were positive for LV IgG (odds ratio 0.8; 95% confidence interval, 0.47-1.36; P = 0.416) and 67.6% versus 79.8% were positive for HPeV IgG, respectively (odds ratio 0.49, 0.27-0.9, P = 0.023). CONCLUSIONS: Thus, no risk associations between LV or HPeV-specific IgG and islet autoimmunity were observed. However, a trend for significantly higher prevalence of HPeV antibodies in control children (P = 0.023) suggests a possible protective association of this virus with islet autoimmunity.


Assuntos
Anticorpos Antivirais/sangue , Diabetes Mellitus Tipo 1/virologia , Células Secretoras de Insulina/patologia , Parechovirus/imunologia , Autoanticorpos/sangue , Criança , Pré-Escolar , Feminino , Finlândia/epidemiologia , Genótipo , Humanos , Imunoglobulina G/sangue , Células Secretoras de Insulina/virologia , Masculino , Parechovirus/genética , Estudos Prospectivos , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA