RESUMO
INTRODUCTION: Alzheimer's disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. METHODS: We investigated the association of AD with both common variants and aggregates of rare coding and non-coding variants in 13,371 individuals of diverse ancestry with whole genome sequencing (WGS) data. RESULTS: Pooled-population analyses of all individuals identified genetic variants at apolipoprotein E (APOE) and BIN1 associated with AD (p < 5 × 10-8). Subgroup-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and non-coding variants in the region. Common variants in LINC00320 were observed associated with AD in Black individuals (p = 1.9 × 10-9). Finally, we observed rare non-coding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p = 7.2 × 10-8). DISCUSSION: We observed that complementary pooled-population and subgroup-specific analyses offered unique insights into the genetic architecture of AD. HIGHLIGHTS: We determine the association of genetic variants with Alzheimer's disease (AD) using 13,371 individuals of diverse ancestry with whole genome sequencing (WGS) data. We identified genetic variants at apolipoprotein E (APOE), BIN1, PSEN1, and LINC00320 associated with AD. We observed rare non-coding variants in the promoter of TOMM40 distinct of APOE.
RESUMO
Alzheimer's Disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. Here, we investigated the association between AD and both common variants and aggregates of rare coding and noncoding variants in 13,371 individuals of diverse ancestry with whole genome sequence (WGS) data. Pooled-population analyses identified genetic variants in or near APOE, BIN1, and LINC00320 significantly associated with AD (p < 5×10-8). Population-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and noncoding variants in this region. Finally, we observed suggestive associations (p < 5×10-5) of aggregates of rare coding rare variants in ABCA7 among non-Hispanic Whites (p=5.4×10-6), and rare noncoding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p=7.2×10-8). Complementary pooled-population and population-specific analyses offered unique insights into the genetic architecture of AD.