Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 340: 125689, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34358987

RESUMO

Monochromatic blue and red wavelengths are more efficient for light to algal biomass conversion than full-spectrum sunlight. In this study, monochromatic light filters were used to down-regulate natural sunlight to blue (400-520 nm) and red (600-700 nm) wavelengths to enhance biomass productivity of Dunaliella salina in outdoor raceway ponds. Growth indices such as cell size, pigment concentrations, biomass yield, photosynthetic efficiency, and major nutritional compositions were determined and compared against a control receiving unfiltered sunlight. Results showed that red light increased biomass productivity, lipid, and carotenoid contents but decreased cell volume, chlorophyll production, and cell weight. Conversely, blue light increased cell volume by 200%, cell weight by 68%, and enhanced chlorophyll a and protein contents by 35% and 51%, respectively, over red light. Compared to the control treatment, photoinhibition of D. salina cells at noon sunshine was decreased 60% by utilizing optical filters on the pond's surface.


Assuntos
Microalgas , Lagoas , Biomassa , Carotenoides , Clorofila A , Luz
2.
Bioresour Technol ; 315: 123865, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32721828

RESUMO

The operation of solar microalgal photobioreactors requires sufficient cooling and heating to maintain reliable high productivity year-round. These operations are energy-intensive and expensive. Growth characteristics and phycocyanin production of Arthrospira platensis were investigated during the austral winter using a thermally-insulated photobioreactor with photovoltaic panel integration for electricity generation. This was compared with a control photobioreactor under a cycle of heating (13-hour night) and thermostat-regulated cooling, and continuously heated raceway pond. Average temperature in the photovoltaic photobioreactor (21.0 ± 0.03 °C) was similar to that in the heated control. Biomass productivity of Arthrospira in the novel photobioreactor was 67% higher than in the raceway pond but significantly lower than the control. Phycocyanin productivity (16.3 ± 1.43 mgg-1d-1 and purity (1.2 ± 0.03) showed no variation between photobioreactors but was significantly lower in the raceway pond. Electrical energy output of the photovoltaic photobioreactor exceeded mixing energy needs by 75%. These results indicate that the novel photobioreactor offers a reliable, energy-efficient platform for large-scale production of high-value chemicals from microalgae.


Assuntos
Microalgas , Spirulina , Biomassa , Fotobiorreatores , Ficocianina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA