Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 275(20): 5161-72, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18793325

RESUMO

Fibronectins (FNs) are dimeric glycoproteins that adopt a globular conformation when present in plasma and solution and an extended conformation in the extracellular matrix. Factor XII (FXII) is a zymogen of the proteolytically active FXIIa that plays a role in thrombus stabilization by enhancing clot formation and in inflammation by enhancing bradykinin formation. To investigate whether the extracellular matrix could play a role in these events, we have recently shown that FXIIa, but not FXII, binds to the extracellular matrix (ECM), and suggested that FN may be the target for the binding. Immunofluorescence microscopy has in the present investigation confirmed that FXIIa added to the ECM colocalizes with FN deposited during growth of human umbilical vein endothelial cells. The aim of the present study, therefore, was to further elucidate the interaction between FXIIa and FN by the use of a solid face binding assay. This showed, like the binding to the ECM, that FXIIa, but not FXII, binds in a Zn2+-independent manner to immobilized FN. The K(D) for the binding was 8.5 +/- 0.9 nM (n = 3). The binding was specific for the immobilized FN, as the binding could not be inhibited by soluble FN. Furthermore, soluble FN did not bind to immobilized FXIIa. However, soluble FN could bind to FXII, and this binding inhibited the surface-induced autoactivation of FXII and subsequent binding of the generated FXIIa to immobilized FN. The presence of FXII in an anti-FN immunoprecipitate of plasma indicated that some FXII in plasma circulates bound to FN. The binding of FXIIa to FN was inhibited by gelatine and fibrin but not by heparin, indicating that FXIIa binds to immobilized FN through the type I repeat modules. Accordingly, FXIIa was found to bind to immobilized fragments of FN containing the type I repeat modules in the N-terminal domain to which fibrin and gelatine bind.


Assuntos
Fator XII/metabolismo , Fator XIIa/metabolismo , Fibronectinas/metabolismo , Sítios de Ligação , Ligação Competitiva , Matriz Extracelular/metabolismo , Heparina/metabolismo , Humanos , Ligação Proteica , Solubilidade , Zinco
2.
Am J Physiol Gastrointest Liver Physiol ; 293(6): G1325-32, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17947448

RESUMO

Absorption of dietary fat in the small intestine is accompanied by a rise of intestinal alkaline phosphatase (IAP) in the serum and of secretion of IAP-containing surfactant-like particles from the enterocytes. In the present work, fat absorption was studied in organ cultured mouse intestinal explants. By immunofluorescence microscopy, fat absorption caused a translocation of IAP from the enterocyte brush border to the interior of the cell, whereas other brush-border enzymes were unaffected. By electron microscopy, the translocation occurred by a rapid (5 min) induction of endocytosis via clathrin-coated pits. By 60 min, IAP was seen in subapical endosomes and along membranes surrounding fat droplets. IAP is a well-known lipid raft-associated protein, and fat absorption was accompanied by a marked change in the density and morphology of the detergent-resistant membranes harboring IAP. A lipid analysis revealed that fat absorption caused a marked increase in the microvillar membrane contents of free fatty acids. In conclusion, fat absorption rapidly induces a transient clathrin-dependent endocytosis via coated pits from the enterocyte brush border. The process selectively internalizes IAP and may contribute to the appearance of the enzyme in serum and surfactant-like particles.


Assuntos
Fosfatase Alcalina/metabolismo , Gorduras na Dieta/farmacocinética , Endocitose/fisiologia , Enterócitos/metabolismo , Intestino Delgado/fisiologia , Intestino Delgado/ultraestrutura , Animais , Células Cultivadas , Camundongos , Microvilosidades/metabolismo
3.
J Biol Chem ; 278(18): 15679-84, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12594212

RESUMO

Lipid rafts (glycosphingolipid/cholesterol-enriched membrane microdomains) have been isolated as low temperature, detergent-resistant membranes from many cell types, but despite their presumed importance as lateral sorting and signaling platforms, fundamental questions persist concerning raft function and even existence in vivo. The nonionic detergent Brij 98 was used to isolate lipid rafts from microvillar membrane vesicles of intestinal brush borders at physiological temperature to compare with rafts, obtained by "conventional" extraction using Triton X-100 at low temperature. Microvillar rafts prepared by the two protocols were morphologically different but had essentially similar profiles of protein- and lipid components, showing that raft microdomains do exist at 37 degrees C and are not "low temperature artifacts." We also employed a novel method of sequential detergent extraction at increasing temperature to define a fraction of highly detergent-resistant "superrafts." These were enriched in galectin-4, a beta-galactoside-recognizing lectin residing on the extracellular side of the membrane. Superrafts also harbored the glycosylphosphatidylinositol-linked alkaline phosphatase and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other membrane microdomain systems.


Assuntos
Galectina 4/fisiologia , Microdomínios da Membrana/fisiologia , Microvilosidades/fisiologia , Animais , Colesterol/fisiologia , Microdomínios da Membrana/química , Microvilosidades/química , Octoxinol/farmacologia , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA