Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0034724, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700333

RESUMO

We have evaluated the inhibitory effects of supernatants and lysates derived from several candidate probiotics, on the growth and biofilm formation of wound pathogens, and their ability to protect human primary epidermal keratinocytes from the toxic effects of pathogens. Supernatants (neutralized and non-neutralized) and lysates (via sonication) from Lactiplantibacillus plantarum, Limosilactobacillus reuteri, Bifidobacterium longum, Lacticaseibacillus rhamnosus GG, and Escherichia coli Nissle 1917 were tested for their inhibitory effects against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumanni. The supernatants of L. plantarum, L. rhamnosus, B. longum, and L. rhamnosus GG reduced the growth of S. aureus, E. coli, and A. baumanni. B. longum additionally inhibited P. aeruginosa growth. However, neutralized Lactobacillus supernatants did not inhibit growth and in some cases were stimulatory. Lysates of L. plantarum and L. reuteri inhibited S. pyogenes while B. longum lysates inhibited E. coli and S. aureus growth. E. coli Nissle 1917 lysates enhanced the growth of S. pyogenes and P. aeruginosa. Biofilm formation by E. coli was reduced by lysates of L. reuteri and neutralized supernatants of all candidate probiotics. P. aeruginosa biofilm formation was reduced by E. coli Nissle supernatant but increased by L. plantarum, L. reuteri, and Bifidobacterium longum lysates. L. reuteri decreased the toxic effects of S. aureus on keratinocytes while E. coli Nissle 1917 lysates protected keratinocytes from S. pyogenes toxicity. In conclusion, lactobacilli and E. coli Nissle lysates confer inhibitory effects on pathogenic growth independently of acidification and may beneficially alter the outcome of interactions between host cell-pathogen in a species-specific manner.IMPORTANCEOne of the attributes of probiotics is their ability to inhibit pathogens. For this reason, many lactobacilli have been investigated for their effects as potential topical therapeutics against skin pathogens. However, this field is in its infancy. Even though probiotics are known to be safe when taken orally, the potential safety concerns when applied to potentially compromised skin are unknown. For this reason, we believe that extracts of probiotics will offer advantages over the use of live bacteria. In this study, we have surveyed five candidate probiotics, when used as extracts, in terms of their effects against common wound pathogens. Our data demonstrate that some probiotic extracts promote the growth of pathogens and highlight the need for careful selection of species and strains when probiotics are to be used topically.

2.
Front Cell Infect Microbiol ; 14: 1307374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660491

RESUMO

Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and chronic wounds) rank as the fourth most prevalent human disease, affecting nearly one-third of the world's population. Skin diseases contribute to significant non-fatal disability globally, impacting individuals, partners, and society at large. Recent evidence suggests that specific microbes colonising our skin and its appendages are often overrepresented in disease. Therefore, manipulating interactions of the microbiome in a non-invasive and safe way presents an attractive approach for management of skin and hair follicle conditions. Due to its proven anti-microbial and anti-inflammatory effects, blue light (380 - 495nm) has received considerable attention as a possible 'magic bullet' for management of skin dysbiosis. As humans, we have evolved under the influence of sun exposure, which comprise a significant portion of blue light. A growing body of evidence indicates that our resident skin microbiome possesses the ability to detect and respond to blue light through expression of chromophores. This can modulate physiological responses, ranging from cytotoxicity to proliferation. In this review we first present evidence of the diverse blue light-sensitive chromophores expressed by members of the skin microbiome. Subsequently, we discuss how blue light may impact the dialog between the host and its skin microbiome in prevalent skin and hair follicle conditions. Finally, we examine the constraints of this non-invasive treatment strategy and outline prospective avenues for further research. Collectively, these findings present a comprehensive body of evidence regarding the potential utility of blue light as a restorative tool for managing prevalent skin conditions. Furthermore, they underscore the critical unmet need for a whole systems approach to comprehend the ramifications of blue light on both host and microbial behaviour.


Assuntos
Luz Azul , Microbiota , Pele , Animais , Humanos , Disbiose/microbiologia , Pele/microbiologia , Pele/efeitos da radiação , Dermatopatias/microbiologia
4.
Front Microbiol ; 14: 1108273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970701

RESUMO

In the quest for mitigators of bacterial virulence, cell-free supernatants (CFS) from 25 human commensal and associated bacteria were tested for activity against Pseudomonas aeruginosa. Among these, Escherichia coli Nissle 1917 CFS significantly inhibited biofilm formation and dispersed extant pseudomonas biofilms without inhibiting planktonic bacterial growth. eDNA was reduced in biofilms following exposure to E. coli Nissle CFS, as visualized by confocal microscopy. E. coli Nissle CFS also showed a significant protective effect in a Galleria mellonella-based larval virulence assay when administrated 24 h before challenge with the P. aeruginosa. No inhibitory effects against P. aeruginosa were observed for other tested E. coli strains. According to proteomic analysis, E. coli Nissle CFS downregulated the expression of several P. aeruginosa proteins involved in motility (Flagellar secretion chaperone FliSB, B-type flagellin fliC, Type IV pilus assembly ATPase PilB), and quorum sensing (acyl-homoserine lactone synthase lasI and HTH-type quorum-sensing regulator rhlR), which are associated with biofilm formation. Physicochemical characterization of the putative antibiofilm compound(s) indicates the involvement of heat-labile proteinaceous factors of greater than 30 kDa molecular size.

5.
Front Microbiol ; 13: 875542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633665

RESUMO

We have previously shown that lysates of Lacticaseibacillus rhamnosus GG confer protection to human keratinocytes against Staphylococcus aureus. L. rhamnosus GG inhibits the growth of S. aureus as well as competitively excludes and displaces the pathogen from keratinocytes. In this study, we have specifically investigated the anti-adhesive action. We have tested the hypothesis that this activity is due to quenching of S. aureus binding sites on keratinocytes by molecules within the Lacticaseibacillus lysate. Trypsinisation or heat treatment removed the protective effect of the lysate suggesting the involvement of proteins as effector molecules. Column separation of the lysate and analysis of discrete fractions in adhesion assays identified a fraction of moderate hydrophobicity that possessed all anti-adhesive functions. Immunoblotting demonstrated that this fraction contained the pilus protein, SpaC. Recombinant SpaC inhibited staphylococcal adhesion to keratinocytes in a dose-dependent manner and improved keratinocyte viability following challenge with viable S. aureus. However, SpaC did not confer the full anti-adhesive effects of the LGG lysate and excluded but did not displace S. aureus from keratinocytes. Further purification produced four protein-containing peaks (F1-F4). Of these, F4, which had the greatest column retention time, was the most efficacious in anti-staphylococcal adhesion and keratinocyte viability assays. Identification of proteins by mass spectrometry showed F4 to contain several known "moonlighting proteins"-i.e., with additional activities to the canonical function, including enolase, Triosephosphate isomerase (TPI), Glyceraldehyde 3 phosphate dehydrogenase (G3P) and Elongation factor TU (EF-Tu). Of these, only enolase and TPI inhibited S. aureus adhesion and protected keratinocytes viability in a dose-dependent manner. These data suggest that inhibition of staphylococcal binding by the L. rhamnosus GG lysate is mediated by SpaC and specific moonlight proteins.

6.
Bioessays ; 43(10): e2100005, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34486144

RESUMO

Dandruff is a common scalp condition, which frequently causes psychological distress in those affected. Dandruff is considered to be caused by an interplay of several factors. However, the pathogenesis of dandruff remains under-investigated, especially with respect to the contribution of the hair follicle. As the hair follicle exhibits unique immune-modulatory properties, including the creation of an immunoinhibitory, immune-privileged milieu, we propose a novel hypothesis taking into account the role of the hair follicle. We hypothesize that the changes and imbalance of yeast and bacterial species, along with increasing proinflammatory sebum by-products, leads to the activation of immune response and inflammation. Hair follicle keratinocytes may then detect these changes in scalp microbiota resulting in the recruitment of leukocytes to the inflammation site. These changes in the scalp skin immune-microenvironment may impact hair follicle immune privilege status, which opens new avenues into exploring the role of the hair follicle in dandruff pathogenesis. Also see the video abstract here: https://youtu.be/mEZEznCYtNs.


Assuntos
Caspa , Dermatite Seborreica , Folículo Piloso , Humanos , Inflamação , Couro Cabeludo
7.
Exp Dermatol ; 30(10): 1509-1516, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34173265

RESUMO

Inflammation is a vital defense mechanism used to protect the body from invading pathogens, but dysregulation can lead to chronic inflammatory disorders such as psoriasis and atopic dermatitis. Differences in microbiota composition have been observed in patients with inflammatory skin conditions compared with healthy individuals, particularly within lesions. There is also increasing evidence accumulating to support the notion that the microbiome contributes to the onset or modulates the severity of inflammatory diseases. Despite the known protective effects of orally administered lactic acid bacteria against inflammation, few studies have investigated the potential protective effects of topical application of bacteria on skin health and even fewer have looked at the potential anti-inflammatory effects of skin commensals. If lack of diversity and reduction in the abundance of specific commensal strains is observed in inflammatory skin lesions, and it is known that commensal bacteria can produce anti-inflammatory compounds, we suggest that certain members of the skin microbiota have anti-inflammatory properties that can be harnessed for use as topical therapeutics in inflammatory skin disorders.


Assuntos
Inflamação/microbiologia , Microbiota , Receptores de Hidrocarboneto Arílico/metabolismo , Dermatopatias/microbiologia , Pele/microbiologia , Humanos
8.
Front Microbiol ; 11: 999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612578

RESUMO

The larvae of the wax moth Galleria mellonella and human oral keratinocytes were used to investigate the protective activity of the candidate oral probiotics Lactobacillus rhamnosus GG (LHR), Lactobacillus reuteri (LR), and Streptococcus salivarius K-12 (SS) against the periodontal pathogens Fusobacterium nucleatum (FN), Porphyromonas gingivalis (PG), and Aggregatibacter actinomycetemcomitans (AA). Probiotics were delivered to the larvae (i) concomitantly with the pathogen in the same larval pro-leg; (ii) concomitantly with the pathogen in different pro-legs, and (iii) before inoculation with the pathogen in different pro-legs. Probiotics were delivered as viable cells, cell lysates or cell supernatants to the oral keratinocytes concomitantly with the pathogen. The periodontal pathogens killed at least 50% of larvae within 24 h although PG and FN were significantly more virulent than AA in the order FN > PG > AA and were also significantly lethal to mammalian cells. The candidate probiotics, however, were not lethal to the larvae or human oral keratinocytes at doses up to 107 cells/larvae. Wax worm survival rates increased up to 60% for some probiotic/pathogen combinations compared with control larvae inoculated with pathogens only. SS was the most effective probiotic against FN challenge and LHR the least, in simultaneous administration and pre-treatment, SS and LR were generally the most protective against all pathogens (up to 60% survival). For P. gingivalis, LR > LHR > SS, and for A. actinomycetemcomitans SS > LHR and LR. Administering the candidate probiotics to human oral keratinocytes significantly decreased the toxic effects of the periodontal pathogens. In summary, the periodontal pathogens were variably lethal to G. mellonella and human oral keratinocytes and the candidate probiotics had measurable protective effects, which were greatest when administrated simultaneously with the periodontal pathogens, suggesting protective effects based on bacterial interaction, and providing a basis for mechanistic studies.

9.
Sci Rep ; 10(1): 8639, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433593

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Aging Cell ; 19(1): e13058, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769623

RESUMO

Aging is characterized by the deterioration of tissue structure and function. In skin, environmental factors, for example, ultraviolet radiation (UVR), can accelerate the effects of aging such as decline in barrier function and subsequent loss of hydration. Water homeostasis is vital for all cellular functions and it is known that organic osmolyte transport is critical to this process. Therefore, we hypothesized that as we age, these tightly controlled physiological mechanisms become disrupted, possibly due to loss of transporter expression. We investigated this in vivo, using human skin samples from photoprotected and photoexposed sites of young and aged volunteers. We show a reduction in keratinocyte cell size with age and a downregulation of osmolyte transporters SMIT and TAUT with both chronic and acute UVR exposure. Single-cell live imaging demonstrated that aged keratinocytes lack efficient cell volume recovery mechanisms possessed by young keratinocytes following physiological stress. However, addition of exogenous taurine significantly rescued cell volume; this was corroborated by a reduction in TAUT mRNA and protein in aged, as compared to young, keratinocytes. Collectively, these novel data demonstrate that human epidermal keratinocytes possess osmolyte-mediated cell volume regulatory mechanisms, which may be compromised in aging. Therefore, this suggests that organic osmolytes-especially taurine-play a critical role in cutaneous age-related xerosis and highlights a fundamental mechanism, vital to our understanding of the pathophysiology of skin aging.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Envelhecimento da Pele/patologia , Pele/metabolismo , Envelhecimento , Humanos , Pele/patologia
11.
Clin Microbiol Rev ; 32(4)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31366612

RESUMO

Microbiomes associated with human skin and the oral cavity are uniquely exposed to personal care regimes. Changes in the composition and activities of the microbial communities in these environments can be utilized to promote consumer health benefits, for example, by reducing the numbers, composition, or activities of microbes implicated in conditions such as acne, axillary odor, dandruff, and oral diseases. It is, however, important to ensure that innovative approaches for microbiome manipulation do not unsafely disrupt the microbiome or compromise health, and where major changes in the composition or activities of the microbiome may occur, these require evaluation to ensure that critical biological functions are unaffected. This article is based on a 2-day workshop held at SEAC Unilever, Sharnbrook, United Kingdom, involving 31 specialists in microbial risk assessment, skin and oral microbiome research, microbial ecology, bioinformatics, mathematical modeling, and immunology. The first day focused on understanding the potential implications of skin and oral microbiome perturbation, while approaches to characterize those perturbations were discussed during the second day. This article discusses the factors that the panel recommends be considered for personal care products that target the microbiomes of the skin and the oral cavity.


Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos/normas , Microbiota/fisiologia , Boca/microbiologia , Pele/microbiologia , Educação , Humanos
12.
Sci Rep ; 8(1): 5167, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581434

RESUMO

Epidermal barrier function is provided by the highly keratinised stratum corneum and also by tight junctions (TJs) in the granular layer of skin. The development of the TJ barrier significantly deteriorates in response to ultraviolet B radiation (UVB). Following exposure to UVB, keratinocytes accumulate organic osmolytes, which are known to preserve cell volume during water stress. Since TJs are intimately associated with control of water homeostasis in skin, we hypothesised that there may be a direct influence of osmolytes on TJ development. Exposure of rat epidermal keratinocytes (REKs) to a single dose of UVB reduced the function of developing TJs. This was concomitant with dislocalisation of claudin-1 and claudin-4 from the keratinocyte plasma membrane, phosphorylation of occludin and elevation of reactive oxygen species (ROS). In the presence of organic osmolytes, these effects were negated but were independent of the effects of these molecules on cell volume, elevation of ROS or the gene expression of TJ proteins. These data suggest that organic osmolytes affect TJs via post-translational mechanism(s) possibly involving protection of the native conformation of TJ proteins.


Assuntos
Betaína/farmacologia , Epiderme/efeitos da radiação , Queratinócitos/efeitos da radiação , Taurina/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Actinas , Análise de Variância , Animais , Linhagem Celular , Membrana Celular/metabolismo , Tamanho Celular/efeitos da radiação , Claudina-1/genética , Claudina-1/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Epiderme/metabolismo , Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Ocludina/metabolismo , Concentração Osmolar , Fosforilação , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Pele/citologia , Protetores Solares , Junções Íntimas/metabolismo
13.
Curr Med Chem ; 25(40): 5503-5511, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29110595

RESUMO

A competent epidermal barrier is crucial for terrestrial mammals. This barrier must keep in water and prevent entry of noxious stimuli. Most importantly, the epidermis must also be a barrier to ultraviolet radiation (UVR) from the sunlight. Currently, the effects of ultraviolet radiation on epidermal barrier function are poorly understood. However, studies in mice and more limited work in humans suggest that the epidermal barrier becomes more permeable, as measured by increased transepidermal water loss, in response UVR, at doses sufficiently high to induce erythema. The mechanisms may include disturbance in the organisation of lipids in the stratum corneum (the outermost layer of the epidermis) and reduction in tight junction function in the granular layer (the first living layer of the skin). By contrast, suberythemal doses of UVR appear to have positive effects on epidermal barrier function. Topical sunscreens have direct and indirect protective effects on the barrier through their ability to block UV and also due to their moisturising or occlusive effects, which trap water in the skin, respectively. Some topical agents such as specific botanical extracts have been shown to prevent the loss of water associated with high doses of UVR. In this review, we discuss the current literature and suggest that the biology of UVR-induced barrier dysfunction, and the use of topical products to protect the barrier, are areas worthy of further investigation.


Assuntos
Dermatopatias/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Administração Tópica , Células Epidérmicas/efeitos dos fármacos , Células Epidérmicas/metabolismo , Humanos , Pele/metabolismo , Pele/patologia , Dermatopatias/metabolismo , Dermatopatias/patologia
14.
Bioessays ; 38(11): 1167-1176, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27554239

RESUMO

As crucial interface organs gut and skin have much in common. Therefore it is unsurprising that several gut pathologies have skin co-morbidities. Nevertheless, the reason for this remains ill explored, and neither mainstream gastroenterology nor dermatology research have systematically investigated the 'gut-skin axis'. Here, in reviewing the field, we propose several mechanistic levels on which gut and skin may interact under physiological and pathological circumstances. We focus on the gut microbiota, with its huge metabolic capacity, and the role of dietary components as potential principle actors along the gut-skin axis. We suggest that metabolites from either the diet or the microbiota are skin accessible. After defining open key questions around the nature of these metabolites, how they are sensed, and which cutaneous changes they can induce, we propose that understanding of these pathways will lead to novel therapeutic strategies based on targeting one organ to improve the health of the other.


Assuntos
Bactérias/metabolismo , Dieta , Microbioma Gastrointestinal/fisiologia , Pele/microbiologia , Humanos , Intestinos/microbiologia , Intestinos/fisiopatologia , Pele/fisiopatologia
15.
Sci Rep ; 5: 16147, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26537246

RESUMO

A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Lacticaseibacillus rhamnosus/metabolismo , Reepitelização/efeitos dos fármacos , Reepitelização/fisiologia , Bioensaio/métodos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Quimiocina CXCL2/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Probióticos/metabolismo , Probióticos/farmacologia , Receptores de Interleucina-8B/imunologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
16.
Appl Environ Microbiol ; 80(18): 5773-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015889

RESUMO

Few studies have evaluated the potential benefits of the topical application of probiotic bacteria or material derived from them. We have investigated whether a probiotic bacterium, Lactobacillus rhamnosus GG, can inhibit Staphylococcus aureus infection of human primary keratinocytes in culture. When primary human keratinocytes were exposed to S. aureus, only 25% of the keratinocytes remained viable following 24 h of incubation. However, in the presence of 10(8) CFU/ml of live L. rhamnosus GG, the viability of the infected keratinocytes increased to 57% (P = 0.01). L. rhamnosus GG lysates and spent culture fluid also provided significant protection to keratinocytes, with 65% (P = 0.006) and 57% (P = 0.01) of cells, respectively, being viable following 24 h of incubation. Keratinocyte survival was significantly enhanced regardless of whether the probiotic was applied in the viable form or as cell lysates 2 h before or simultaneously with (P = 0.005) or 12 h after (P = 0.01) S. aureus infection. However, spent culture fluid was protective only if added before or simultaneously with S. aureus. With respect to mechanism, both L. rhamnosus GG lysate and spent culture fluid apparently inhibited adherence of S. aureus to keratinocytes by competitive exclusion, but only viable bacteria or the lysate could displace S. aureus (P = 0.04 and 0.01, respectively). Furthermore, growth of S. aureus was inhibited by either live bacteria or lysate but not spent culture fluid. Together, these data suggest at least two separate activities involved in the protective effects of L. rhamnosus GG against S. aureus, growth inhibition and reduction of bacterial adhesion.


Assuntos
Antibiose , Aderência Bacteriana , Queratinócitos/microbiologia , Queratinócitos/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Staphylococcus aureus/fisiologia , Sobrevivência Celular , Células Cultivadas , Humanos , Staphylococcus aureus/crescimento & desenvolvimento
17.
Exp Dermatol ; 23(8): 534-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24942488

RESUMO

The ability to conserve water is fundamental to terrestrial life. A number of organs such as the kidney and the bladder have important roles in the regulation of body water balance. The epidermis of skin is also fundamental to this process, and it is in a constant battle to prevent loss of water to the external, dry environment. Given this important role of the epidermis as a barrier to water loss, it is perhaps surprising that many of the cellular mechanisms by which human keratinocytes achieve cell volume homoeostasis, maintain epidermal hydration and adapt to biological effects from environmental stressors such as ultraviolet radiation are poorly understood. This article reviews what is known thus far and speculates about other potential mechanisms through which skin conducts water homoeostasis, with a particular emphasis on the putative role of organic osmolytes.


Assuntos
Homeostase/fisiologia , Osmorregulação/fisiologia , Pele/metabolismo , Água/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Junções Íntimas/fisiologia , Perda Insensível de Água/fisiologia
18.
Appl Environ Microbiol ; 79(16): 4887-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770906

RESUMO

In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain.


Assuntos
Bifidobacterium/química , Queratinócitos/microbiologia , Lactobacillus/química , Probióticos/administração & dosagem , Junções Íntimas/microbiologia , Bifidobacterium/classificação , Bifidobacterium/genética , Humanos , Queratinócitos/metabolismo , Lactobacillus/classificação , Lactobacillus/genética , Probióticos/química , Junções Íntimas/metabolismo , Receptor 2 Toll-Like/metabolismo
19.
Appl Environ Microbiol ; 78(15): 5119-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22582077

RESUMO

Recent studies have suggested that the topical application of probiotic bacteria can improve skin health or combat disease. We have utilized a primary human keratinocyte culture model to investigate whether probiotic bacteria can inhibit Staphylococcus aureus infection. Evaluation of the candidate probiotics Lactobacillus reuteri ATCC 55730, Lactobacillus rhamnosus AC413, and Lactobacillus salivarius UCC118 demonstrated that both L. reuteri and L. rhamnosus, but not L. salivarius, reduced S. aureus-induced keratinocyte cell death in both undifferentiated and differentiated keratinocytes. Keratinocyte survival was significantly higher if the probiotic was applied prior to (P < 0.01) or simultaneously with (P < 0.01) infection with S. aureus but not when added after infection had commenced (P > 0.05). The protective effect of L. reuteri was not dependent on the elaboration of inhibitory substances such as lactic acid. L. reuteri inhibited adherence of S. aureus to keratinocytes by competitive exclusion (P = 0.026). L. salivarius UCC118, however, did not inhibit S. aureus from adhering to keratinocytes (P > 0.05) and did not protect keratinocyte viability. S. aureus utilizes the α5ß1 integrin to adhere to keratinocytes, and blocking of this integrin resulted in a protective effect similar to that observed with probiotics (P = 0.03). This suggests that the protective mechanism for L. reuteri-mediated protection of keratinocytes was by competitive exclusion of the pathogen from its binding sites on the cells. Our results suggest that use of a topical probiotic prophylactically could inhibit the colonization of skin by S. aureus and thus aid in the prevention of infection.


Assuntos
Apoptose/fisiologia , Queratinócitos/microbiologia , Limosilactobacillus reuteri/fisiologia , Interações Microbianas/fisiologia , Probióticos/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/fisiologia , Análise de Variância , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Especificidade da Espécie , Staphylococcus aureus/patogenicidade
20.
Exp Dermatol ; 20(2): 88-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21255086

RESUMO

Epithelia are found at the interfaces between body compartments where they act as selective permeability barriers that maintain the unique composition of the compartments on either side. Epithelial barrier function is dependent on tight junctions (TJs), which seal the intercellular or paracellular spaces but may permit selective permeability. In simple epithelia (one cell thick), the function of TJs is relatively well understood. By contrast, our understanding of TJ structure and function in stratified epithelia (e.g. the epidermis) is limited. This article briefly discusses what is known about TJs and their components in simple epithelia and speculates about their roles in the epidermis.


Assuntos
Claudinas/fisiologia , Epiderme/fisiologia , Junções Íntimas/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Células Epidérmicas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA