Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Vet Sci ; 10: 1176772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180067

RESUMO

Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.

2.
Clin Biochem ; 116: 113-119, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119921

RESUMO

BACKGROUND: Multiple Myeloma (MM) is a haematological malignancy with increasing global incidence. Diagnosis of MM should be initiated at the primary care level to achieve the best patient outcome. However, this can be delayed due to nonspecific presenting symptoms, such as back pain and fatigue. OBJECTIVES: The aim of this study was to investigate if commonly requested blood tests could indicate MM in primary care and potentially lead to earlier diagnosis. DESIGN AND METHODS: This retrospective observational study involved an audit of clinical and laboratory data from 109 MM patients, including patients with Active MM (N = 53), Smouldering MM (N = 33), and Free light chain MM (N = 23). RESULTS: Of the 16 potential biomarkers investigated, the most promising indicator for early detection of active MM and Smouldering MM was an increased Calculated Globulin (CG). The median CG for patients with active MM (50 g/L) was 78.6% higher than the healthy control group (28 g/L). Smouldering MM patients had a median CG value (38 g/L), which was 35.7% higher than the control group. Of interest, the median CG result was only 16.7% higher in the control group than in the free light chain MM group, suggesting CG would not be as effective at detecting this subtype. CONCLUSIONS: CG is derived from Total Protein and Albumin data, which are commonly measured in routine liver function profiles, thus there is no additional test or cost requirement. Based on these data, CG has potential as a clinical biomarker to support early detection of MM at the primary care level and allow for appropriate targeted investigations.


Assuntos
Globulinas , Mieloma Múltiplo , Paraproteinemias , Mieloma Múltiplo Latente , Humanos , Mieloma Múltiplo/diagnóstico , Paraproteinemias/diagnóstico , Estudos Retrospectivos , Diagnóstico Precoce
3.
Clin Lymphoma Myeloma Leuk ; 22(1): e34-e40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470720

RESUMO

In recent years, the life expectancy of Multiple Myeloma (MM) patients has substantially improved, but this cancer remains incurable with increasing incidence in the developed world. Most MM patients will eventually relapse due to residual drug-resistant cancerous cells that survive treatment, commonly referred to as minimal residual disease (MRD). Methods to improve MRD detection in MM patients are generating considerable interest as a means of monitoring patients' response to treatment. In clinical laboratories, these methods currently require bone marrow aspirates which are invasive and frequently miss detection of localised disease due to the spatial heterogeneity of disease infiltration. By simplifying serial sampling and allowing for the detection of extramedullary disease, a blood-based method could significantly impact treatment duration and intensity and minimise chemotherapy-induced toxicity. This review will describe the current blood-based techniques available to detect MRD in MM and compare their potential to evaluate patient prognosis and drive therapeutic decisions.


Assuntos
Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Espectrometria de Massas/métodos , Mieloma Múltiplo/complicações , Neoplasia Residual/etiologia , Humanos , Mieloma Múltiplo/patologia , Neoplasia Residual/fisiopatologia
4.
Front Immunol ; 12: 672461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248953

RESUMO

Objectives: Psoriatic arthritis (PsA) is a chronic inflammatory disease associated with psoriasis. Janus Kinase inhibitors (JAKi) have emerged as an encouraging class of drugs for the treatment of PsA. Here, we compare the effect of four JAKi on primary PsA synovial fibroblasts (PsAFLS) activation, metabolic function, and invasive and migratory capacity. Methods: Primary PsAFLS were isolated and cultured with JAKi (Peficitinib, Filgotinib, Baricitinib and Upadacitinib) in the presence of Oncostatin M (OSM). pSTAT3 expression in response to OSM was quantified by Western Blot analysis. Pro-inflammatory cytokines/chemokines were quantified by ELISA and cell migration by wound-repair scratch assays. Invasive capacity was examined using Matrigel™ invasion chambers and MMP multiplex MSD assays. PsAFLS bioenergetics was assessed using the Seahorse XFe Extracellular Flux Analyzer, which simultaneously quantifies two energetic pathways- glycolysis (ECAR) and oxidative phosphorylation (OCR). In parallel, inflammatory, invasive, and migratory genes were quantified by RT-PCR. Results: OSM induces pSTAT3 expression in PsAFLS. OSM-induced secretion of MCP-1 and IL-6 was inhibited by all JAKi with Peficitinib, Baricitinib and Upadacitinib showing the greatest effect. In contrast, JAKi had no significant impact on IL-8 expression in response to OSM. PsAFLS cell invasion, migratory capacity and MMP1, 3, and 9 were suppressed following JAKi treatment, with Peficitinib showing the greatest effect. These functional effects were accompanied by a change in the cellular bioenergetic profile of PsAFLS, where JAKi significantly decreased glycolysis and the ECAR/OCR, resulting in a shift to a more quiescent phenotype, with Peficitinib demonstrating the most pronounced effect. Conclusion: This study demonstrates that JAK/STAT signalling mediates the complex interplay between inflammation and cellular metabolism in PsA pathogenesis. This inhibition shows effective suppression of inflammatory mechanisms that drive pathogenic functions of PsAFLS, further supporting the role of JAKi as a therapeutic target for the treatment of PsA.


Assuntos
Artrite Psoriásica , Fibroblastos/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Fatores de Transcrição STAT/antagonistas & inibidores , Adamantano/análogos & derivados , Adamantano/farmacologia , Adulto , Idoso , Artrite Psoriásica/imunologia , Artrite Psoriásica/metabolismo , Azetidinas/farmacologia , Células Cultivadas , Feminino , Fibroblastos/enzimologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Membrana Sinovial/efeitos dos fármacos , Triazóis/farmacologia
5.
Stem Cell Res ; 52: 102222, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33578364

RESUMO

NRXN1 encodes thousands of splicing variants categorized into long NRXN1α, short NRXN1ß and extremely short NRXN1γ, which exert differential roles in neuronal excitation/inhibition. NRXN1α deletions are common in autism spectrum disorder (ASD) and other neurodevelopmental/neuropsychiatric disorders. We derived induced pluripotent stem cells (iPSCs) from one sibling control and two ASD probands carrying NRXN1α+/-, using non-integrating Sendai viral method. All iPSCs highly expressed pluripotency markers and could be differentiated into ectodermal/mesodermal/endodermal cells. The genotype and karyotype of the iPSCs were validated by whole genome SNP array. The availability of the iPSCs offers an opportunity for understanding NRXN1α function in human neurons and in ASD.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtorno do Espectro Autista/genética , Diferenciação Celular , Humanos , Vírus Sendai , Irmãos
6.
Stem Cell Res ; 53: 102254, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631419

RESUMO

NRXN1 deletions are commonly found in autism spectrum disorder (ASD) and other neurodevelopmental/neuropsychiatric disorders. Derivation of induced pluripotent stem cells (iPSCs) from different diseases involving different deletion regions are essential, as NRXN1 may produce thousands of splicing variants. We report here the derivation of iPSCs from a sibling control and an ASD proband carrying de novo heterozygous deletions in the middle region of NRXN1, using a non-integrating Sendai viral kit. The genotype and karyotype of the iPSCs were validated by whole genome SNP array. All iPSC lines highly expressed pluripotency markers and could be differentiated into three germ layers.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Humanos , Masculino , Moléculas de Adesão de Célula Nervosa , Vírus Sendai , Irmãos
7.
Front Immunol ; 10: 1580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354725

RESUMO

Oesophageal adenocarcinoma (OAC) is an aggressive malignancy with poor prognosis, and incidence is increasing rapidly in the Western world. Mucosal-associated invariant T (MAIT) cells recognize bacterial metabolites and kill infected cells, yet their role in OAC is unknown. We aimed to elucidate the role of MAIT cells during cancer development by characterizing the frequency, phenotype, and function of MAIT cells in human blood and tissues, from OAC and its pre-malignant inflammatory condition Barrett's oesophagus (BO). Blood and tissues were phenotyped by flow cytometry and conditioned media from explanted tissue was used to model the effects of the tumor microenvironment on MAIT cell function. Associations were assessed between MAIT cell frequency, circulating inflammatory markers, and clinical parameters to elucidate the role of MAIT cells in inflammation driven cancer. MAIT cells were decreased in BO and OAC blood compared to healthy controls, but were increased in oesophageal tissues, compared to BO-adjacent tissue, and remained detectable after neo-adjuvant treatment. MAIT cells in tumors expressed CD8, PD-1, and NKG2A but lower NKG2D than BO cohorts. MAIT cells produced less IFN-γ and TNF-α in the presence of tumor-conditioned media. OAC cell line viability was reduced upon exposure to expanded MAIT cells. Serum levels of chemokine IP-10 were inversely correlated with MAIT cell frequency in both tumors and blood. MAIT cells were higher in the tumors of node-negative patients, but were not significantly associated with other clinical parameters. This study demonstrates that OAC tumors are infiltrated by MAIT cells, a type of CD8 T cell featuring immune checkpoint expression and cytotoxic potential. These findings may have implications for immunotherapy and immune scoring approaches.


Assuntos
Adenocarcinoma/etiologia , Adenocarcinoma/metabolismo , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Esôfago de Barrett/etiologia , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Biomarcadores , Biomarcadores Tumorais , Sobrevivência Celular , Citocinas/sangue , Citocinas/metabolismo , Citotoxicidade Imunológica , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Feminino , Humanos , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologia , Microambiente Tumoral/imunologia
8.
J Immunol ; 202(12): 3404-3411, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076528

RESUMO

Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células T Invariantes Associadas à Mucosa/fisiologia , Obesidade/imunologia , Adulto , Células Cultivadas , Feminino , Glicólise , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Masculino , Análise de Sequência de RNA , Transdução de Sinais
9.
J Biol Chem ; 293(47): 18270-18284, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30287689

RESUMO

In response to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen, three ER transmembrane signaling proteins, inositol-requiring enzyme 1 (IRE1), PRKR-like ER kinase (PERK), and activating transcription factor 6α (ATF6α), are activated. These proteins initiate a signaling and transcriptional network termed the unfolded protein response (UPR), which re-establishes cellular proteostasis. When this restoration fails, however, cells undergo apoptosis. To investigate cross-talk between these different UPR enzymes, here we developed a high-content live cell screening platform to image fluorescent UPR-reporter cell lines derived from human SH-SY5Y neuroblastoma cells in which different ER stress signaling proteins were silenced through lentivirus-delivered shRNA constructs. We observed that loss of ATF6 expression results in uncontrolled IRE1-reporter activity and increases X box-binding protein 1 (XBP1) splicing. Transient increases in both IRE1 mRNA and IRE1 protein levels were observed in response to ER stress, suggesting that IRE1 up-regulation is a general feature of ER stress signaling and was further increased in cells lacking ATF6 expression. Moreover, overexpression of the transcriptionally active N-terminal domain of ATF6 reversed the increases in IRE1 levels. Furthermore, inhibition of IRE1 kinase activity or of downstream JNK activity prevented an increase in IRE1 levels during ER stress, suggesting that IRE1 transcription is regulated through a positive feed-forward loop. Collectively, our results indicate that from the moment of activation, IRE1 signaling during ER stress has an ATF6-dependent "off-switch."


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático , Fator 6 Ativador da Transcrição/química , Fator 6 Ativador da Transcrição/genética , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Humanos , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA