Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 36(4): e2978, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034880

RESUMO

During the development of cell lines for therapeutic protein production, a vector harboring a product transgene is integrated into the genome. To ensure production stability and consistent product quality, single-cell cloning is then performed. Since cells derived from the same parental clone have the same transgene integration locus, the identity of the integration site can also be used to verify the clonality of a production cell line. In this study, we present a high-throughput pipeline for clonality verification through integration site analysis. Sequence capture of genomic fragments that contain both vector and host cell genome sequences was used followed by next-generation sequencing to sequence the relevant vector-genome junctions. A Python algorithm was then developed for integration site identification and validated using a cell line with known integration sites. Using this system, we identified the integration sites of the host vector for 31 clonal cell lines from five independent vector integration events while using one set of probes against common features of the host vector for transgene integration. Cell lines from the same lineage had common integration sites, and they were distinct from unrelated cell lines. The integration sites obtained for each clone as part of the analysis may also be used for clone selection, as the sites can have a profound effect on the transgene's transcript level and the stability of the resulting cell line. This method thus provides a rapid system for integration site identification and clonality verification.


Assuntos
Linhagem Celular/citologia , Evolução Clonal/genética , Biossíntese de Proteínas/genética , Proteínas/uso terapêutico , Algoritmos , Animais , Linhagem da Célula/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas/genética , Análise de Célula Única
2.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32041799

RESUMO

For high-frequency transfer of pCF10 between E. faecalis cells, induced expression of the pCF10 genes encoding conjugative machinery from the prgQ operon is required. This process is initiated by the cCF10 (C) inducer peptide produced by potential recipient cells. The expression timing of prgB, an "early" gene just downstream of the inducible promoter, has been studied extensively in single cells. However, several previous studies suggest that only 1 to 10% of donors induced for early prgQ gene expression actually transfer plasmids to recipients, even at a very high recipient population density. One possible explanation for this is that only a minority of pheromone-induced donors actually transcribe the entire prgQ operon. Such cells would not be able to functionally conjugate but might play another role in the group behavior of donors. Here, we sought to (i) simultaneously assess the presence of RNAs produced from the proximal (early induced transcripts [early Q]) and distal (late Q) portions of the prgQ operon in individual cells, (ii) investigate the prevalence of heterogeneity in induced transcript length, and (iii) evaluate the temporality of induced transcript expression. Using fluorescent in situ hybridization chain reaction (HCR) transcript labeling and single-cell microscopic analysis, we observed that most cells expressing early transcripts (QL, prgB, and prgA) also expressed late transcripts (prgJ, pcfC, and pcfG). These data support the conclusion that, after induction is initiated, transcription likely extends through the end of the conjugation machinery operon for most, if not all, induced cells.IMPORTANCE In Enterococcus faecalis, conjugative plasmids like pCF10 often carry antibiotic resistance genes. With antibiotic treatment, bacteria benefit from plasmid carriage; however, without antibiotic treatment, plasmid gene expression may have a fitness cost. Transfer of pCF10 is mediated by cell-to-cell signaling, which activates the expression of conjugation genes and leads to efficient plasmid transfer. Yet, not all donor cells in induced populations transfer the plasmid. We examined whether induced cells might not be able to functionally conjugate due to premature induced transcript termination. Single-cell analysis showed that most induced cells do, in fact, express all of the genes required for conjugation, suggesting that premature transcription termination within the prgQ operon does not account for failure of induced donor cell gene transfer.


Assuntos
Conjugação Genética , Enterococcus faecalis/citologia , Enterococcus faecalis/genética , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Feromônios/genética , Feromônios/metabolismo , Regiões Promotoras Genéticas , Análise de Célula Única
3.
Curr Opin Chem Eng ; 302020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391982

RESUMO

Cell culture processes are used to produce the vast majority of protein therapeutics, valued at over US$180 billion per annum worldwide. For more than a decade now, these processes have become highly productive. To further enhance capital efficiency, there has been an increase in the adoption of disposable apparatus and continuous processing, as well as a greater exploration of in-line sensing, various -omic tools, and cell engineering to enhance process controllability and product quality consistency. These feats in cell culture processing for protein biologics will help accelerate the bioprocess advancements for virus and cell therapy applications.

4.
Biotechnol Bioeng ; 116(1): 41-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30144379

RESUMO

Chinese hamster ovary cells, commonly used in the production of therapeutic proteins, are aneuploid. Their chromosomes bear structural abnormality and undergo changes in structure and number during cell proliferation. Some production cell lines are unstable and lose their productivity over time in the manufacturing process and during the product's life cycle. To better understand the link between genomic structural changes and productivity stability, an immunoglobulin G producing cell line was successively single-cell cloned to obtain subclones that retained or lost productivity, and their genomic features were compared. Although each subclone started with a single karyotype, the progeny quickly diversified to a population with a distribution of chromosome numbers that is not distinctive from the parent and among subclones. The comparative genomic hybridization (CGH) analysis showed that the extent of copy variation of gene coding regions among different subclones stayed at levels of a few percent. Genome regions that were prone to loss of copies, including one with a product transgene integration site, were identified in CGH. The loss of the transgene copy was accompanied by loss of transgene transcript level. Sequence analysis of the host cell and parental producing cell showed prominent structural variations within the regions prone to loss of copies. Taken together, we demonstrated the transient nature of clonal homogeneity in cell line development and the retention of a population distribution of chromosome numbers; we further demonstrated that structural variation in the transgene integration region caused cell line instability. Future cell line development may target the transgene into structurally stable regions.


Assuntos
Produtos Biológicos/metabolismo , Células CHO/metabolismo , Proliferação de Células , Instabilidade Genômica , Variação Estrutural do Genoma , Aneuploidia , Animais , Hibridização Genômica Comparativa , Cricetulus , Eficiência , Imunoglobulina G/metabolismo , Cariotipagem , Análise de Sequência de DNA
5.
Biotechnol J ; 13(10): e1800226, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30024101

RESUMO

For the biomanufacturing of protein biologics, establishing stable cell lines with high transgene transcription is critical for high productivity. Modern genome engineering tools can direct transgene insertion to a specified genomic locus and can potentially become a valuable tool for cell line generation. In this study, the authors survey transgene integration sites and their transcriptional activity to identify characteristics of desirable regions. A lentivirus containing destabilized Green Fluorescent Protein (dGFP) is used to infect Chinese hamster ovary cells at a low multiplicity of infection, and cells with high or low GFP fluorescence are isolated. RNA sequencing and Assay for Transposase Accessible Chromatin using sequencing data shows integration sites with high GFP expression are in larger regions of high transcriptional activity and accessibility, but not necessarily within highly transcribed genes. This method is used to obtain high Immunoglobulin G (IgG) expressing cell lines with a single copy of the transgene integrated into transcriptionally active and accessible genomic regions. Dual recombinase-mediated cassette exchange is then employed to swap the IgG transgene for erythropoietin or tumor necrosis factor receptor-Fc. This work thus highlights a strategy to identify desirable sites for transgene integration and to streamline the development of new product producing cell lines.


Assuntos
Proteínas Recombinantes , Ativação Transcricional , Transgenes , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde , Lentivirus , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
6.
PLoS Genet ; 13(7): e1006878, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671948

RESUMO

In Enterococcus faecalis, sex pheromone-mediated transfer of antibiotic resistance plasmids can occur under unfavorable conditions, for example, when inducing pheromone concentrations are low and inhibiting pheromone concentrations are high. To better understand this paradox, we adapted fluorescence in situ hybridization chain reaction (HCR) methodology for simultaneous quantification of multiple E. faecalis transcripts at the single cell level. We present direct evidence for variability in the minimum period, maximum response level, and duration of response of individual cells to a specific inducing condition. Tracking of induction patterns of single cells temporally using a fluorescent reporter supported HCR findings. It also revealed subpopulations of rapid responders, even under low inducing pheromone concentrations where the overall response of the entire population was slow. The strong, rapid induction of small numbers of cells in cultures exposed to low pheromone concentrations is in agreement with predictions of a stochastic model of the enterococcal pheromone response. The previously documented complex regulatory circuitry controlling the pheromone response likely contributes to stochastic variation in this system. In addition to increasing our basic understanding of the biology of a horizontal gene transfer system regulated by cell-cell signaling, demonstration of the stochastic nature of the pheromone response also impacts any future efforts to develop therapeutic agents targeting the system. Quantitative single cell analysis using HCR also has great potential to elucidate important bacterial regulatory mechanisms not previously amenable to study at the single cell level, and to accelerate the pace of functional genomic studies.


Assuntos
Enterococcus faecalis/genética , Transferência Genética Horizontal , Feromônios/genética , Atrativos Sexuais/genética , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/efeitos dos fármacos , Genoma Bacteriano , Humanos , Hibridização in Situ Fluorescente , Plasmídeos/genética , Análise de Célula Única
7.
Cell Syst ; 3(2): 172-186, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27426982

RESUMO

We developed the transcription factor (TF)-target gene database and the Systems Genetics Network Analysis (SYGNAL) pipeline to decipher transcriptional regulatory networks from multi-omic and clinical patient data, and we applied these tools to 422 patients with glioblastoma multiforme (GBM). The resulting gbmSYGNAL network predicted 112 somatically mutated genes or pathways that act through 74 TFs and 37 microRNAs (miRNAs) (67 not previously associated with GBM) to dysregulate 237 distinct co-regulated gene modules associated with patient survival or oncogenic processes. The regulatory predictions were associated to cancer phenotypes using CRISPR-Cas9 and small RNA perturbation studies and also demonstrated GBM specificity. Two pairwise combinations (ETV6-NFKB1 and romidepsin-miR-486-3p) predicted by the gbmSYGNAL network had synergistic anti-proliferative effects. Finally, the network revealed that mutations in NF1 and PIK3CA modulate IRF1-mediated regulation of MHC class I antigen processing and presentation genes to increase tumor lymphocyte infiltration and worsen prognosis. Importantly, SYGNAL is widely applicable for integrating genomic and transcriptomic measurements from other human cohorts.


Assuntos
Glioblastoma , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs , Oncogenes
8.
Appl Environ Microbiol ; 82(15): 4537-45, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208137

RESUMO

UNLABELLED: Enterococcus faecalis, a common causative agent of hospital-acquired infections, is resistant to many known antibiotics. Its ability to acquire and transfer resistance genes and virulence determinants through conjugative plasmids poses a serious concern for public health. In some cases, induction of transfer of E. faecalis plasmids results from peptide pheromones produced by plasmid-free recipient cells, which are sensed by the plasmid-bearing donor cells. These plasmids generally encode an inhibitory peptide that competes with the pheromone and suppresses self-induction of donors. We recently demonstrated that the inhibitor peptide encoded on plasmid pCF10 is part of a unique quorum-sensing system in which it functions as a "self-sensing signal," reducing the response to the pheromone in a density-dependent fashion. Based on the similarities between regulatory features controlling conjugation in pAD1 and pAM373 and those controlling conjugation in pCF10, we hypothesized that these plasmids are likely to exhibit similar quorum-sensing behaviors. Experimental findings indicate that for both pAD1 and pAM373, high donor densities indeed resulted in decreased induction of the conjugation operon and reduced conjugation frequencies. This effect was restored by the addition of exogenous inhibitor, confirming that the inhibitor serves as an indicator for donor density. Donor density also affects cross-species conjugative plasmid transfer. Based on our experimental results, we propose models for induction and shutdown of the conjugation operon in pAD1 and pAM373. IMPORTANCE: Enterococcus faecalis is a leading cause of hospital-acquired infections. Its ability to transfer antibiotic resistance and virulence determinants by sharing its genetic material with other bacteria through direct cell-cell contact via conjugation poses a serious threat. Two antagonistic signaling peptides control the transfer of plasmids pAD1 and pAM373: a peptide pheromone produced by plasmid-free recipients triggers the conjugative transfer in plasmid-containing donors, and an inhibitor peptide encoded on the plasmid and produced by donor cells serves to modulate the donor response in accordance with the relative abundance of donors and recipients. We demonstrate that high donor density reduces the conjugation frequency of both of these plasmids, which is a consequence of increased inhibitor concentration in high-donor-density cultures. While most antibiotic strategies end up selecting resistant strains and disrupting the community balance, manipulating bacterial signaling mechanisms can serve as an alternate strategy to prevent the spread of antibiotic resistance.


Assuntos
Conjugação Genética , Enterococcus faecalis/genética , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/fisiologia , Regulação Bacteriana da Expressão Gênica , Plasmídeos/metabolismo , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA