Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Clin Transl Immunology ; 13(6): e1516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835954

RESUMO

Objectives: Globally, non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and the leading cause of cancer-related deaths. Tumor-associated circulating cells in NSCLC can have a wide variety of morphological and phenotypic characteristics, including epithelial, immunological or hybrid subtypes. The distinctive characteristics and potential clinical significance of these cells in patients with NSCLC are explored in this study. Methods: We utilised a spiral microfluidic device to enrich large cells and cell aggregates from the peripheral blood samples of NSCLC patients. These cells were characterised through high-resolution immunofluorescent imaging and statistical analysis, correlating findings with clinical information from our patient cohort. Results: We have identified varied populations of heterotypic circulating tumor cell clusters with differing immune cell composition that included a distinct class of atypical tumor-associated macrophages that exhibits unique morphology and cell size. This subtype's prevalence is positively correlated with the tumor stage, progression and metastasis. Conclusions: Our study reveals a heterogeneous landscape of circulating tumor cells and their clusters, underscoring the complexity of NSCLC pathobiology. The identification of a unique subtype of atypical tumor-associatedmacrophages that simultaneously express both tumor and immune markers and whose presence correlates with late disease stages, poor clinical outcomes and metastatic risk infers  the potential of these cells as biomarkers for NSCLC staging and prognosis. Future studies should focus on the role of these cells in the tumor microenvironment and their potential as therapeutic targets. Additionally, longitudinal studies tracking these cell types through disease progression could provide further insights into their roles in NSCLC evolution and response to treatment.

2.
Nucleic Acid Ther ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648015

RESUMO

Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.

3.
J Transl Med ; 22(1): 239, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439077

RESUMO

The spatial localisation of immune cells within tumours are key to understand the intercellular communications that can dictate clinical outcomes. Here, we demonstrate an analysis pipeline for highly multiplexed CODEX data to phenotype and profile spatial features and interactions in NSCLC patients that subsequently received PD1 axis immunotherapy. We found that regulatory T cells (Tregs) are enriched in non-responding patients and this was consistent with their localization within stromal and peripheral tumour-margins. Proximity-based interactions between Tregs and both monocytes (p = 0.009) and CD8+ T cells (p = 0.009) were more frequently found in non-responding patients, while macrophages were more frequently located in proximity to HLADR+ tumour cells (p = 0.01) within responding patients. Cellular neighbourhoods analysis indicated that both macrophages (p = 0.003) and effector CD4+ T cells (p = 0.01) in mixed tumour neighbourhoods, as well as CD8+ T cells (p = 0.03) in HLADR+ tumour neighbourhoods were associated with favorable clinical response. Evaluation of the inferred regulatory functions between immune cells relative to the tumour suggested that macrophages exhibit an immunosuppressive phenotype against both CD4+ and CD8+ T cells, and that this association scores more highly in ICI refractory patients. These spatial patterns are associated with overall survival in addition to ICI response and may thus indicate features for the functional understanding of the tumour microenvironment.


Assuntos
Adenoma Pleomorfo , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/terapia , Imunoterapia , Microambiente Tumoral
4.
Curr Opin Biotechnol ; 86: 103083, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382325

RESUMO

The development of new therapies for cancer is underpinned by an increasing need to comprehensively characterize the tumor microenvironment (TME). While traditional approaches have relied on bulk or single-cell approaches, these are limited in their ability to provide cellular context. Deconvolution of the complex TME is fundamental to understanding tumor dynamics and treatment resistance. Spatially resolved characterization of the TME is likely to provide greater insights into the cellular architecture, tumor-immune cell interactions, receptor-ligand interactions, and cell niches. In turn, these aid in dictating the optimal way in which to target each patient's individual cancer. In this review, we discuss a number of cutting-edge in situ spatial profiling methods giving us new insights into tumor biology.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Comunicação Celular
5.
Clin Transl Immunology ; 13(2): e1488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322491

RESUMO

Objectives: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus infection in pregnancy is associated with higher incidence of placental dysfunction, referred to by a few studies as a 'preeclampsia-like syndrome'. However, the mechanisms underpinning SARS-CoV-2-induced placental malfunction are still unclear. Here, we investigated whether the transcriptional architecture of the placenta is altered in response to SARS-CoV-2 infection. Methods: We utilised whole-transcriptome, digital spatial profiling, to examine gene expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the third trimester of their pregnancy (n = 7) and those collected prior to the start of the coronavirus disease 2019 (COVID-19) pandemic (n = 9). Results: Through comprehensive spatial transcriptomic analyses of the trophoblast and villous core stromal cell subpopulations in the placenta, we identified SARS-CoV-2 to promote signatures associated with hypoxia and placental dysfunction. Notably, genes associated with vasodilation (NOS3), oxidative stress (GDF15, CRH) and preeclampsia (FLT1, EGFR, KISS1, PAPPA2) were enriched with SARS-CoV-2. Pathways related to increased nutrient uptake, vascular tension, hypertension and inflammation were also enriched in SARS-CoV-2 samples compared to uninfected controls. Conclusions: Our findings demonstrate the utility of spatially resolved transcriptomic analysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy, particularly its role in placental dysfunction. Furthermore, this study highlights the significance of digital spatial profiling in mapping the intricate crosstalk between trophoblasts and villous core stromal cells, thus shedding light on pathways associated with placental dysfunction in pregnancies with SARS-CoV-2 infection.

6.
ACS Omega ; 9(7): 8362-8373, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405517

RESUMO

Human single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target. While prior efforts have focused on inhibiting hSSB1 by targeting its DNA binding domain, this study seeks to explore the inhibition of the hSSB1 function by disrupting its interaction with the key partner protein INTS3 in the SOSS1 complex. The investigative strategy entails a molecular docking-based screening of a specific compound library against the three-dimensional structure of INTS3 at the hSSB1 binding interface. Subsequent assessments involve in vitro analyses of protein-protein interaction (PPI) disruption and cellular effects through co-immunoprecipitation and immunofluorescence assays, respectively. Moreover, the study includes an evaluation of the structural stability of ligands at the INTS3 hot-spot site using molecular dynamics simulations. The results indicate a potential in vitro disruption of the INTS3-hSSB1 interaction by three of the tested compounds obtained from the virtual screening with one impacting the recruitment of hSSB1 and INTS3 to chromatin following DNA damage. To our knowledge, our results identify the first set of drug-like compounds that functionally target INTS3-hSSB1 interaction, and this provides the basis for further biophysical investigations that should help to speed up PPI inhibitor discovery.

7.
Med Res Rev ; 44(3): 1121-1146, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146814

RESUMO

Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Metabolômica/métodos , Neoplasias/metabolismo , Metaboloma/fisiologia , Biomarcadores/metabolismo
8.
Front Immunol ; 14: 1135489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153589

RESUMO

Mucosal head and neck squamous cell carcinoma (HNSCC) are the seventh most common cancer, with approximately 50% of patients living beyond 5 years. Immune checkpoint inhibitors (ICIs) have shown promising results in patients with recurrent or metastatic (R/M) disease, however, only a subset of patients benefit from immunotherapy. Studies have implicated the tumor microenvironment (TME) of HNSCC as a major factor in therapy response, highlighting the need to better understand the TME, particularly by spatially resolved means to determine cellular and molecular components. Here, we employed targeted spatial profiling of proteins on a cohort of pre-treatment tissues from patients with R/M disease to identify novel biomarkers of response within the tumor and stromal margins. By grouping patient outcome categories into response or non-response, based on Response Evaluation Criteria in Solid Tumors (RECIST) we show that immune checkpoint molecules, including PD-L1, B7-H3, and VISTA, were differentially expressed. Patient responders possessed significantly higher tumor expression of PD-L1 and B7-H3, but lower expression of VISTA. Analysis of response subgroups indicated that tumor necrosis factor receptor (TNFR) superfamily members including OX40L, CD27, 4-1BB, CD40, and CD95/Fas, were associated with immunotherapy outcome. CD40 expression was higher in patient-responders than non responders, while CD95/Fas expression was lower in patients with partial response (PR) relative to those with stable disease (SD) and progressive disease (PD). Furthermore, we found that high 4-1BB expression in the tumor compartment, but not in the stroma, was associated with better overall survival (OS) (HR= 0.28, p-adjusted= 0.040). Moreover, high CD40 expression in tumor regions (HR= 0.27, p-adjusted= 0.035), and high CD27 expression in the stroma (HR= 0.2, p-adjusted=0.032) were associated with better survival outcomes. Taken together, this study supports the role of immune checkpoint molecules and implicates the TNFR superfamily as key players in immunotherapy response in our cohort of HNSCC. Validation of these findings in a prospective study is required to determine the robustness of these tissue signatures.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas de Checkpoint Imunológico , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Proteínas de Checkpoint Imunológico/genética , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/etiologia , Antígeno B7-H1/metabolismo , Microambiente Tumoral , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Receptores do Fator de Necrose Tumoral
9.
Anal Chem ; 95(22): 8522-8532, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224231

RESUMO

Phosphorylation is a post-translational modification in proteins that changes protein conformation and activity for regulating signal transduction pathways. This mechanism is frequently impaired in lung cancer, resulting in permanently active constitutive phosphorylation to initiate tumor growth and/or reactivate pathways in response to therapy. We developed a multiplexed phosphoprotein analyzer chip (MPAC) that enables rapid (detection time: 5 min) and sensitive (LOD: 2 pg/µL) detection of protein phosphorylation and presents phosphoproteomic profiling of major phosphorylation pathways in lung cancer. We monitored phosphorylated receptors and downstream proteins involved in mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR pathways in lung cancer cell line models and patient-derived extracellular vesicles (EV). Using kinase inhibitor drugs in cell line models, we found that the drug can inhibit the phosphorylation and/or activation of the kinase pathway. We then generated a phosphorylation heatmap by EV phosphoproteomic profiling of plasma samples isolated from 36 lung cancer patients and 8 noncancer individuals. The heatmap showed a clear difference between the noncancer and cancer samples and identify the specific proteins that are activated in the cancer samples. Our data also showed that MPAC could monitor immunotherapy responses by assessment of the phosphorylation states of the proteins, particularly for PD-L1. Finally, with a longitudinal study, we found that the phosphorylation levels of the proteins were indicative of a positive response to therapy. We believe that this study will lead to personalized treatment by providing a better understanding of the active and resistant pathways and will provide a tool for selecting combined and targeted therapies for precision medicine.


Assuntos
Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Estudos Longitudinais , Transdução de Sinais , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral
10.
Immunology ; 169(4): 487-502, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37022147

RESUMO

The composition and activation status of the cellular milieu contained within the tumour microenvironment (TME) is becoming increasingly recognized as a driving factor for immunotherapy response. Here, we employed multiplex immunohistochemistry (mIHC), and digital spatial profiling (DSP) to capture the targeted immune proteome and transcriptome of tumour and TME compartments from an immune checkpoint inhibitor (ICI)-treated (n = 41) non-small cell lung cancer (NSCLC) patient cohort. We demonstrate by mIHC that the interaction of CD68+ macrophages with PD1+ , FoxP3+ cells is enriched in ICI refractory tumours (p = 0.012). Patients responsive to ICI therapy expressed higher levels of IL2 receptor alpha (CD25, p = 0.028) within their tumour compartments, which corresponded with increased IL2 mRNA (p = 0.001) within their stroma. In addition, stromal IL2 mRNA levels positively correlated with the expression of pro-apoptotic markers cleaved caspase 9 (p = 2e-5 ) and BAD (p = 5.5e-4 ) and negatively with levels of memory marker, CD45RO (p = 7e-4 ). Immuno-inhibitory markers CTLA-4 (p = 0.021) and IDO-1 (p = 0.023) were suppressed in ICI-responsive patients. Tumour expression of CD44 was depleted in the responsive patients (p = 0.02), while higher stromal expression of one of its ligands, SPP1 (p = 0.008), was observed. Cox survival analysis also indicated tumour CD44 expression was associated with poorer prognosis (hazard ratio [HR] = 1.61, p = 0.01), consistent with its depletion in ICI-responsive patients. Through multi-modal approaches, we have dissected the characteristics of NSCLC immunotherapy treatment groups and provide evidence for the role of several markers including IL2, CD25, CD44 and SPP1 in the efficacy of current generations of ICI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Interleucina-2 , Multiômica , Imunoterapia/efeitos adversos , Microambiente Tumoral
11.
Immunology ; 168(3): 403-419, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36107637

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes that govern this remain unknown. In this study, we investigated the host transcriptome landscape of cardiac tissues collected at rapid autopsy from seven SARS-CoV-2, two pH1N1, and six control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by γ-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of interferon-stimulated genes, in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , SARS-CoV-2 , Transcriptoma , Interferons
12.
Immunology ; 168(2): 256-272, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35933597

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most common types of cancer in the world and has a 5-year survival rate of ~20%. Immunotherapies have shown promising results leading to durable responses, however, they are only effective for a subset of patients. To determine the best therapeutic approach, a thorough and in-depth profiling of the tumour microenvironment (TME) is required. The TME is a complex network of cell types that form an interconnected network, promoting tumour cell initiation, growth and dissemination. The stroma, immune cells and endothelial cells that comprise the TME generate a plethora of cytotoxic or cytoprotective signalling pathways. In this review, we discuss immunotherapeutic targets in NSCLC tumours and how the TME may influence patients' response to immunotherapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células Endoteliais/patologia , Imunoterapia/métodos , Antineoplásicos/farmacologia , Microambiente Tumoral
13.
Front Immunol ; 13: 895513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651606

RESUMO

Head and neck squamous cell carcinoma (HNSCC) often presents with locoregional or distant disease, despite multimodal therapeutic approaches, which include surgical resection, chemoradiotherapy, and more recently, immunotherapy for metastatic or recurrent HNSCC. Therapies often target the primary and nodal regional HNSCC sites, and their efficacy at controlling occult distant sites remains poor. While our understanding of the tumor microenvironment conducive to effective therapies is increasing, the biology underpinning locoregional sites remains unclear. Here, we applied targeted spatial proteomic approaches to primary and lymph node metastasis from an oropharyngeal SCC (OPSCC) cohort to understand the expression of proteins within tumors, and stromal compartments of the respective sites in samples of both matched and unmatched patients. In unmatched analyses of n = 43 primary and 11 nodal metastases, our data indicated that tumor cells in nodal metastases had higher levels of Ki-67, PARP, BAD, and cleaved caspase 9, suggesting a role for increased proliferation, DNA repair, and apoptosis within these metastatic cells. Conversely, in matched analyses (n = 7), pro-apoptotic markers BIM and BAD were enriched in the stroma of primary tumors. Univariate, overall survival (OS) analysis indicated CD25 in tumor regions of primary tumors to be associated with reduced survival (HR = 3.3, p = 0.003), while progesterone receptor (PR) was associated with an improved OS (HR = 0.33, p = 0.015). This study highlights the utility of spatial proteomics for delineating the tumor and stromal compartment composition, and utility toward understanding these properties in locoregional metastasis. These findings indicate unique biological properties of lymph node metastases that may elucidate further understanding of distant metastatic in OPSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Humanos , Metástase Linfática , Recidiva Local de Neoplasia , Proteômica , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral
14.
Clin Transl Immunology ; 11(6): e1397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686027

RESUMO

Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of tumors. While significant progress has been made using multimodal treatment, the 5-year survival remains at 50%. Developing effective therapies, such as immunotherapy, will likely lead to better treatment of primary and metastatic disease. However, not all HNSCC tumors respond to immune checkpoint blockade therapy. Understanding the complex cellular composition and interactions of the tumor microenvironment is likely to lead to new knowledge for effective therapies and treatment resistance. In this review, we discuss HNSCC characteristics, predictive biomarkers, factors influencing immunotherapy response, with a focus on the tumor microenvironment.

15.
Curr Oncol ; 29(5): 3044-3060, 2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35621637

RESUMO

The discovery of immune checkpoint proteins such as PD-1/PDL-1 and CTLA-4 represents a significant breakthrough in the field of cancer immunotherapy. Therefore, humanized monoclonal antibodies, targeting these immune checkpoint proteins have been utilized successfully in patients with metastatic melanoma, renal cell carcinoma, head and neck cancers and non-small lung cancer. The US FDA has successfully approved three different categories of immune checkpoint inhibitors (ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab). Unfortunately, not all patients respond favourably to these drugs, highlighting the role of biomarkers such as Tumour mutation burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ, and ECM in predicting responses to ICIs-based immunotherapy. The current study aims to review the literature and updates on ICIs in cancer therapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Proteínas de Checkpoint Imunológico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Morte Celular Programada 1
17.
BMJ Open ; 12(1): e057663, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078853

RESUMO

INTRODUCTION: There is a strong theoretical rationale for combining checkpoint blockade with cytotoxic chemotherapy in pleural mesothelioma and other cancers. Two recent single-arm, phase 2 trials [DuRvalumab with chEmotherapy as first-line treAtment in advanced pleural Mesothelioma (DREAM) and Phase II multicenter study of anti-PD-L1, durvalumab, in combination with cisplatin and pemetrexed for the first-line treatment of unresectable malignant pleural mesothelioma (PrE0505)] combining the programmed death ligand-1 (PD-L1) inhibitor durvalumab with standard first-line chemotherapy exceeded prespecified safety and activity criteria to proceed to a phase 3 confirmatory trial to assess this combination. We present the protocol of the DREAM3R trial. METHODS AND ANALYSIS: This multicentre open-label randomised trial will recruit 480 treatment-naïve adults with advanced pleural mesothelioma, randomised (2:1) to either 3-weekly durvalumab 1500 mg plus 3-weekly doublet chemotherapy (cisplatin 75 mg/m2 or carboplatin, Area Under the Curve,AUC 5 and pemetrexed 500 mg/m2) 4-6 cycles, followed by 4-weekly durvalumab 1500 mg until disease progression, unacceptable toxicity or patient withdrawal; OR doublet chemotherapy alone for 4-6 cycles, followed by observation. The target accrual time is 27 months, with follow-up for an additional 24 months. This provides over 85% power if the true HR for overall survival (OS) is 0.70, with two-sided alpha of 0.05, assuming a median OS of 15 months in the control group. Randomisation is stratified by age (18-70 years vs >70), sex, histology (epithelioid vs non-epithelioid), platinum agent (cisplatin vs carboplatin) and region (USA vs Australia/New Zealand vs Other). The primary endpoint is OS. Secondary endpoints include progression-free survival, objective tumour response (by mRECIST V.1.1 and iRECIST), adverse events, health-related quality of life and healthcare resource use. Tertiary correlative objectives are to explore and validate potential prognostic and/or predictive biomarkers (including features identified in the DuRvalumab with chEmotherapy as first-line treAtment in advanced pleural Mesothelioma (DREAM) and PrE0505 studies, PD-L1 expression, tumour mutational burden, genomic characteristics and human leukocyte antigen subtypes) in tissue and serial blood samples. An imaging databank will be assembled for validation of radiological measures of response, and studies of possible radiomic biomarkers in mesothelioma. ETHICS AND DISSEMINATION: The protocol was approved by human research ethics review committees for all participating sites. Results will be disseminated in peer-reviewed journals and at scientific conferences. DRUG SUPPLY: AstraZeneca. PROTOCOL VERSION: CTC 0231 / TOGA 18/001 / PrE0506 3.0, 29 July 2021. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT04334759 ACTRN 12620001199909.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Adolescente , Adulto , Idoso , Anticorpos Monoclonais , Protocolos de Quimioterapia Combinada Antineoplásica , Ensaios Clínicos Fase III como Assunto , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
18.
Eur Respir J ; 59(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34675048

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). A better definition of the pulmonary host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies. METHODS: Here, we use targeted transcriptomics of formalin-fixed paraffin-embedded tissue using the NanoString GeoMX platform to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19, pandemic H1N1 influenza and uninfected control patients. RESULTS: Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs (emphasising the advantages of spatial transcriptomics) with the areas of high viral load associated with an increased type I interferon response. Once the dominant cell type present in the sample, within patient correlations and patient-patient variation, had been controlled for, only a very limited number of genes were differentially expressed between the lungs of fatal influenza and COVID-19 patients. Strikingly, the interferon-associated gene IFI27, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza. CONCLUSION: Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.


Assuntos
COVID-19 , Influenza Humana , Interferon Tipo I , COVID-19/genética , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/genética , Interferon Tipo I/metabolismo , Pulmão/patologia , SARS-CoV-2
19.
Front Immunol ; 13: 1060438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685600

RESUMO

Purpose: Robust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. Methods: We conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients. Results: We show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients. Conclusion: These data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Influenza Humana/genética , Biomarcadores , Proteínas de Membrana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA