Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Br J Pharmacol ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616050

RESUMO

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.

2.
J Headache Pain ; 25(1): 36, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481170

RESUMO

BACKGROUND: The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS: CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS: Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS: Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Receptores da Calcitonina , Ratos , Feminino , Masculino , Humanos , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Gânglios Espinais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Hibridização in Situ Fluorescente , Dor , RNA Mensageiro
3.
Acta Biomater ; 158: 87-100, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640949

RESUMO

Electrically modulated delivery of proteins provides an avenue to target local tissues specifically and tune the dose to the application. This approach prolongs and enhances activity at the target site whilst reducing off-target effects associated with systemic drug delivery. The work presented here explores an electrically active composite material comprising of a biocompatible hydrogel, gelatin methacryloyl (GelMA) and a conducting polymer, poly(3,4-ethylenedioxythiophene), generating a conducting polymer hydrogel. In this paper, the key characteristics of electroactivity, mechanical properties, and morphology are characterized using electrochemistry techniques, atomic force, and scanning electron microscopy. Cytocompatibility is established through exposure of human cells to the materials. By applying different electrical-stimuli, the short-term release profiles of a model protein can be controlled over 4 h, demonstrating tunable delivery patterns. This is followed by extended-release studies over 21 days which reveal a bimodal delivery mechanism influenced by both GelMA degradation and electrical stimulation events. This data demonstrates an electroactive and cytocompatible material suitable for the delivery of protein payloads over 3 weeks. This material is well suited for use as a treatment delivery platform in tissue engineering applications where targeted and spatio-temporal controlled delivery of therapeutic proteins is required. STATEMENT OF SIGNIFICANCE: Growth factor use in tissue engineering typically requires sustained and tunable delivery to generate optimal outcomes. While conducting polymer hydrogels (CPH) have been explored for the electrically responsive release of small bioactives, we report on a CPH capable of releasing a protein payload in response to electrical stimulus. The composite material combines the benefits of soft hydrogels acting as a drug reservoir and redox-active properties from the conducting polymer enabling electrical responsiveness. The CPH is able to sustain protein delivery over 3 weeks, with electrical stimulus used to modulate release. The described material is well suited as a treatment delivery platform to deliver large quantities of proteins in applications where spatio-temporal delivery patterns are paramount.


Assuntos
Hidrogéis , Polímeros , Humanos , Polímeros/química , Hidrogéis/química , Engenharia Tecidual/métodos , Sistemas de Liberação de Medicamentos , Eletricidade , Gelatina/química
4.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430275

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the trigeminal ganglia (TG). The TG conducts nociceptive signals in the head and may play roles in migraine. PACAP infusion provokes headaches in healthy individuals and migraine-like attacks in patients; however, it is not clear whether targeting this system could be therapeutically efficacious. To effectively target the PACAP system, an understanding of PACAP receptor distribution is required. Therefore, this study aimed to characterize commercially available antibodies and use these to detect PACAP-responsive receptors in the TG. Antibodies were initially validated in receptor transfected cell models and then used to explore receptor expression in rat and human TG. Antibodies were identified that could detect PACAP-responsive receptors, including the first antibody to differentiate between the PAC1n and PAC1s receptor splice variants. PAC1, VPAC1, and VPAC2 receptor-like immunoreactivity were observed in subpopulations of both neuronal and glial-like cells in the TG. In this study, PAC1, VPAC1, and VPAC2 receptors were detected in the TG, suggesting they are all potential targets to treat migraine. These antibodies may be useful tools to help elucidate PACAP-responsive receptor expression in tissues. However, most antibodies exhibited limitations, requiring the use of multiple methodologies and the careful inclusion of controls.


Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Ratos , Animais , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Gânglio Trigeminal/metabolismo , Expressão Gênica , Anticorpos , Transtornos de Enxaqueca/genética
5.
Front Chem ; 10: 877618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176893

RESUMO

Peptide5 is a 12-amino acid mimetic peptide that corresponds to a region of the extracellular loop 2 (EL2) of connexin43. Peptide5 regulates both cellular communication with the cytoplasm (hemichannels) and cell-to-cell communication (gap junctions), and both processes are implicated in neurological pathologies. To address the poor in vivo stability of native peptide5 and to improve its activity, twenty-five novel peptide5 mimetics were designed and synthesized. All the analogues underwent biological evaluation as a hemichannel blocker and as a gap junction disruptor, and several were assessed for stability in human serum. From this study, it was established that several acylations on the N-terminus were tolerated in the hemichannel assay. However, the replacement of the L-Lys with an N-methylated L-Lys to give H-VDCFLSRPTE-N-MeKT-OH showed good hemichannel and gap junction activity and was more stable in human serum. The cyclic peptide variants generally were not tolerated in either the hemichannel and gap junction assay although several possessed outstanding stability in human serum.

6.
Biomed Mater ; 17(5)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654031

RESUMO

Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose-gelatin (AG-Gel) hydrogel blends as a bioink for extrusion-based bioprinting. Four different AG-Gel hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the AG-Gel bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the AG-Gel. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the AG-Gel bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed AG-Gel bioinks demonstrated high viability (>90%) after 23 d in culture. This study demonstrates the properties of AG-Gel as a printable and biocompatible material applicable for use as a bioink.


Assuntos
Bioimpressão , Neuroblastoma , Bioimpressão/métodos , Encapsulamento de Células , Gelatina , Humanos , Hidrogéis , Impressão Tridimensional , Sefarose , Engenharia Tecidual/métodos , Alicerces Teciduais
7.
Front Physiol ; 13: 860037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620595

RESUMO

The neuropeptide calcitonin gene-related peptide (CGRP) is expressed in the trigeminal ganglia, a key site in craniofacial pain and migraine. CGRP potently activates two receptors: the CGRP receptor and the AMY1 receptor. These receptors are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with either the calcitonin receptor-like receptor (CLR) to form the CGRP receptor or the calcitonin receptor (CTR) to form the AMY1 receptor. The expression of the CGRP receptor in trigeminal ganglia has been described in several studies; however, there is comparatively limited data available describing AMY1 receptor expression and in which cellular subtypes it is found. This research aimed to determine the relative distributions of the AMY1 receptor subunit, CTR, and CGRP in neurons or glia in rat, mouse and human trigeminal ganglia. Antibodies against CTR, CGRP and neuronal/glial cell markers were applied to trigeminal ganglia sections to investigate their distribution. CTR-like and CGRP-like immunoreactivity were observed in both discrete and overlapping populations of neurons. In rats and mice, 30-40% of trigeminal ganglia neurons displayed CTR-like immunoreactivity in their cell bodies, with approximately 78-80% of these also containing CGRP-like immunoreactivity. Although human cases were more variable, a similar overall pattern of CTR-like immunoreactivity to rodents was observed in the human trigeminal ganglia. CTR and CGRP appeared to be primarily colocalized in small to medium sized neurons, suggesting that colocalization of CTR and CGRP may occur in C-fiber neurons. CGRP-like or CTR-like immunoreactivity were not typically observed in glial cells. Western blotting confirmed that CTR was expressed in the trigeminal ganglia of all three species. These results confirm that CTR is expressed in trigeminal ganglia neurons. The identification of populations of neurons that express both CGRP and CTR suggests that CGRP could act in an autocrine manner through a CTR-based receptor, such as the AMY1 receptor. Overall, this suggests that a trigeminal ganglia CTR-based receptor may be activated during migraine and could therefore represent a potential target to develop treatments for craniofacial pain and migraine.

8.
Adv Sci (Weinh) ; 9(20): e2105913, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35499184

RESUMO

Bioelectronic devices have found use at the interface with neural tissue to investigate and treat nervous system disorders. Here, the development and characterization of a very thin flexible bioelectronic implant inserted along the thoracic spinal cord in rats directly in contact with and conformable to the dorsal surface of the spinal cord are presented. There is no negative impact on hind-limb functionality nor any change in the volume or shape of the spinal cord. The bioelectronic implant is maintained in rats for a period of 12 weeks. The first subdural recordings of spinal cord activity in freely moving animals are presented; rats are plugged in via a recording cable and allowed to freely behave and move around on a raised platform. Recordings contained multiple distinct voltage waveforms spatially localize to individual electrodes. This device has great potential to monitor electrical signaling in the spinal cord after an injury and in the future, this implant will facilitate the identification of biomarkers in spinal cord injury and recovery, while enabling the delivery of localized electroceutical and chemical treatments.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Traumatismos da Medula Espinal , Animais , Próteses e Implantes , Ratos , Traumatismos da Medula Espinal/terapia , Espaço Subdural
9.
Mater Today Bio ; 13: 100212, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35198960

RESUMO

Despite the demonstrated effectiveness of nano-materials for drug delivery to the brain, a comprehensive understanding of their transport processes across the blood brain barrier (BBB) remains undefined. This multidisciplinary study aimed to gain an insight into the transport processes across BBB, focusing on the transcytosis of liposomes and the impact of liposomal pH-sensitivity. Glutathione-PEGylated pH-sensitive (GSH-PEG-pSL) and non pH-sensitive liposomes (GSH-PEG-L) were fluorescently labelled with rhodamine-DOPE and calcein, both impermeable to biomembranes. Following exposure to brain microvascular endothelial cells (hBMECs), the key functional component of the BBB, intracellular trafficking were evaluated by confocal live-cell imaging. The exocytosed liposomes, including naturally-occurring extracellular vesicles (EVs), were collected using differential centrifugation and and characterised regarding the EV yield, morphology and EVs origin using nanoparticle tracking analysis, transmission electron microscopy and flow cytometry. The transcytosis of liposomes through a verified BBB model comprising of hBMECs monolayer was also quantified. GSH-PEG-L was initially retained in the endo-lysosomes before exocytosed while packed in EVs of different sizes (<100 â€‹nm to >1 â€‹µm) while GSH-PEG-pSL underwent endosome escape with less degree of exocytosis with more fluorescence remaining in the cytoplasm. Compared with the untreated, hBMECs treated with GSH-PEG-L increased the yield of nano-EV and medium-EV by 7.9-fold and 4.6-fold, respectively. Conversely, GSH-pSL-treated cells produced 2.9-fold more nano-EVs but 2-fold less medium-EVs than the control cells. These vesicles were CD144-positive confirming their endothelial cell-origin. GSH-PEG-L demonstrated 2-fold higher efficiencies than GSH-PEG-pSL to cross the in vitro BBB model via exocytosis. Taken together, GSH-PEG-L might utilize EV secretion pathway to achieve transcytosis across brain endothelial cells of the BBB while liposomal pH-sensitivity favors cytoplasmic delivery.

10.
Sci Rep ; 11(1): 23935, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907283

RESUMO

Neuronal models are a crucial tool in neuroscientific research, helping to elucidate the molecular and cellular processes involved in disorders of the nervous system. Adapting these models to a high-throughput format enables simultaneous screening of multiple agents within a single assay. SH-SY5Y cells have been widely used as a neuronal model, yet commonly in an undifferentiated state that is not representative of mature neurons. Differentiation of the SH-SY5Y cells is a necessary step to obtain cells that express mature neuronal markers. Despite this understanding, the absence of a standardised protocol has limited the use of differentiated SH-SY5Y cells in high-throughput assay formats. Here, we describe techniques to differentiate and re-plate SH-SY5Y cells within a 96-well plate for high-throughput screening. SH-SY5Y cells seeded at an initial density of 2,500 cells/well in a 96-well plate provide sufficient space for neurites to extend, without impacting cell viability. Room temperature pre-incubation for 1 h improved the plating homogeneity within the well and the ability to analyse neurites. We then demonstrated the efficacy of our techniques by optimising it further for neurite outgrowth analysis. The presented methods achieve homogenously distributed differentiated SH-SY5Y cells, useful for researchers using these cells in high-throughput screening assays.


Assuntos
Diferenciação Celular , Ensaios de Triagem em Larga Escala , Neuritos , Crescimento Neuronal , Linhagem Celular Tumoral , Humanos
11.
J Neurosci Methods ; 362: 109302, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343573

RESUMO

BACKGROUND: Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD: A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS: Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S): This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS: We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.


Assuntos
Tecido Nervoso , Traumatismos da Medula Espinal , Animais , Axônios , Dispositivos Lab-On-A-Chip , Neurônios , Ratos
12.
Biosensors (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069959

RESUMO

Electric Cell-Substrate Impedance Sensing (ECIS), xCELLigence and cellZscope are commercially available instruments that measure the impedance of cellular monolayers. Despite widespread use of these systems individually, direct comparisons between these platforms have not been published. To compare these instruments, the responses of human brain endothelial monolayers to TNFα and IL1ß were measured on all three platforms simultaneously. All instruments detected transient changes in impedance in response to the cytokines, although the response magnitude varied, with ECIS being the most sensitive. ECIS and cellZscope were also able to attribute responses to particular endothelial barrier components by modelling the multifrequency impedance data acquired by these instruments; in contrast the limited frequency xCELLigence data cannot be modelled. Consistent with its superior impedance sensing, ECIS exhibited a greater capacity than cellZscope to distinguish between subtle changes in modelled endothelial monolayer properties. The reduced resolving ability of the cellZscope platform may be due to its electrode configuration, which is necessary to allow access to the basolateral compartment, an important advantage of this instrument. Collectively, this work demonstrates that instruments must be carefully selected to ensure they are appropriate for the experimental questions being asked when assessing endothelial barrier properties.


Assuntos
Técnicas Biossensoriais , Células Endoteliais/fisiologia , Interleucina-1beta/química , Fator de Necrose Tumoral alfa/química , Impedância Elétrica , Humanos
13.
Neuromodulation ; 24(7): 1237-1246, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34013608

RESUMO

OBJECTIVES: To assess the efficacy of transcutaneous electrical nerve stimulation (TENS) for neurogenic bladder dysfunction secondary to spinal cord injury (SCI). MATERIALS AND METHODS: A systematic search of MEDLINE, EMBASE, Web of Science, Scopus, and Cochrane libraries up to February 2021 was performed using PRISMA methodology. All randomized controlled trials (RCTs) that studied TENS for neurogenic bladder in a SCI population were included. The primary outcomes of interest were maximum cystometric capacity (MCC) and maximum detrusor pressure (Pdet). Meta-analysis was conducted with RevMan v5.3. RESULTS: Six RCTs involving 353 participants were included. Meta-analysis showed that TENS significantly increased MCC (standardized mean difference 1.11, 95% confidence interval [CI] 0.08-2.14, p = 0.03, I2  = 54%) in acute SCI. No benefits were seen for maximum Pdet. TENS was associated with no major adverse events. CONCLUSIONS: TENS may be an effective, safe intervention for neurogenic bladder dysfunction following SCI. Further studies are essential to confirm these results and more work is required to determine optimal stimulation parameters and duration of the treatment.


Assuntos
Traumatismos da Medula Espinal , Estimulação Elétrica Nervosa Transcutânea , Bexiga Urinaria Neurogênica , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/terapia
14.
Ann Neurol ; 89(6): 1157-1171, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33772845

RESUMO

OBJECTIVE: Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood, and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP). METHODS: Thirty-six migraine without aura patients were enrolled in a randomized, double-blind, 2-way, crossover, positive-controlled clinical trial study to receive infusion of an amylin analogue pramlintide or human αCGRP on 2 different experimental days. Furthermore, translational studies in cells and mouse models, and rat, mouse and human tissue samples were conducted. RESULTS: Thirty patients (88%) developed headache after pramlintide infusion, compared to 33 (97%) after CGRP (p = 0.375). Fourteen patients (41%) developed migraine-like attacks after pramlintide infusion, compared to 19 patients (56%) after CGRP (p = 0.180). The pramlintide-induced migraine-like attacks had similar clinical characteristics to those induced by CGRP. There were differences between treatments in vascular parameters. Human receptor pharmacology studies showed that an amylin receptor likely mediates these pramlintide-provoked effects, rather than the canonical CGRP receptor. Supporting this, preclinical experiments investigating symptoms associated with migraine showed that amylin treatment, like CGRP, caused cutaneous hypersensitivity and light aversion in mice. INTERPRETATION: Our findings propose amylin receptor agonism as a novel contributor to migraine pathogenesis. Greater therapeutic gains could therefore be made for migraine patients through dual amylin and CGRP receptor antagonism, rather than selectively targeting the canonical CGRP receptor. ANN NEUROL 2021;89:1157-1171.


Assuntos
Agonistas dos Receptores da Amilina/efeitos adversos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos adversos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/efeitos adversos , Estudos Cross-Over , Método Duplo-Cego , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/metabolismo
15.
J Control Release ; 332: 74-95, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33600882

RESUMO

Tissue regeneration aims to achieve functional restoration following injury by creating an environment to enable the body to self-repair. Strategies for regeneration rely on the introduction of biomaterial scaffolding, cells and bioactive molecules into the body, at or near the injury site. Of these bioactive molecules, growth factors (GFs) play a pivotal role in directing regenerative pathways for many cell populations. However, the therapeutic use of GFs has been limited by the complexity of biological injury and repair, and the properties of the GFs themselves, including their short half-life, poor tissue penetration, and off-target side effects. Externally triggered delivery systems have the potential to facilitate the delivery of GFs into the target tissues with considerations of the timing, sequence, amount, and location of GF presentation. This review briefly discusses the challenges facing the therapeutic use of GFs, then, we discuss approaches to externally trigger GF release from delivery systems categorised by stimulation type; ultrasound, temperature, light, magnetic fields and electric fields. Overall, while the use of GFs for tissue regeneration is still in its infancy, externally controlled GF delivery technologies have the potential to achieve robust and effective solutions to present GFs to injured tissues. Future technological developments must occur in conjunction with a comprehensive understanding of the biology at the injury site to ensure translation of promising technologies into real world benefit.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intercelular , Materiais Biocompatíveis , Cicatrização
16.
Int J Mol Sci ; 21(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139674

RESUMO

We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected from three New Zealand melanoma lines. ECIS technology was used to assess if the conditioned media disrupted the endothelial barrier independent of the melanoma cells. The melanoma cell secretome was assessed using cytometric bead array (CBA), Luminex immunoassay and multiplex Proteome Profilers, to detect the expression of secretory proteins, which may facilitate metastasis. Finally, ECIS technology was used to assess the direct effects of secreted proteins identified as candidates from the proteome screens. We show that melanoma-conditioned media significantly disrupted the brain endothelial barrier, however, to a much lesser extent than the cells from which they were collected. Cytokine and proteome profiling of the conditioned media showed evidence of high concentrations of approximately 15 secreted proteins (including osteopontin, IL-8, GDF-15, MIF and VEGF). These 15 secreted proteins were expressed variably across the melanoma lines. Surprisingly, the addition of these individually to the brain endothelial cells did not substantially affect the barrier integrity. ANGPTL-4 and TGFß were also produced by the melanoma cells. Whilst TGFß-1 had a pronounced effect on the barrier integrity, surprisingly ANGPTL-4 did not. However, its C-terminal fragment did and within a very similar period to the conditioned media, albeit not to the same extent. Herein we show that melanoma cells produce a wide-range of soluble factors at high concentrations, which most likely favour support or survival of the cancer cells. Most of these, except for TGFß-1 and the C-terminal fragment of ANGPTL-4, did not have an impact on the integrity of the brain endothelial cells.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Técnicas Biossensoriais/métodos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Citometria de Fluxo/métodos , Humanos , Imunoensaio/métodos , Melanoma/genética , Melanoma/patologia , Proteoma/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
17.
Polymers (Basel) ; 12(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722387

RESUMO

The fabrication of stretchable conductive material through vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) is presented alongside a method to easily pattern these materials with nanosecond laser structuring. The devices were constructed from sheets of vapor phase polymerized PEDOT doped with tosylate on pre-stretched elastomeric substrates followed by laser structuring to achieve the desired geometrical shape. Devices were characterized for electrical conductivity, morphology, and electrical integrity in response to externally applied strain. Fabricated PEDOT sheets displayed a conductivity of 53.1 ± 1.2 S cm-1; clear buckling in the PEDOT microstructure was observed as a result of pre-stretching the underlying elastomeric substrate; and the final stretchable electronic devices were able to remain electrically conductive with up to 100% of externally applied strain. The described polymerization and fabrication steps achieve highly processable and patternable functional conductive polymer films, which are suitable for stretchable electronics due to their ability to withstand externally applied strains of up to 100%.

18.
J Neuropathol Exp Neurol ; 79(7): 791-799, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32447392

RESUMO

Cerebral radiation necrosis (CRN) is a delayed complication of radiosurgery that can result in severe neurological deficits. The biological changes leading to necrotic damage may identify therapeutic targets for this complication. Connexin43 expression associated with chronic inflammation may presage the development of CRN. A mouse model of delayed CRN was used. The left hemispheres of adult female mice were irradiated with single-fraction, high-dose radiation using a Leksell Gamma Knife. The brains were collected 1 and 4 days, and 1-3 weeks after the radiation. The expression of connexin43, interleukin-1ß (IL-1ß), GFAP, isolectin B-4, and fibrinogen was evaluated using immunohistochemical staining and image analysis. Compared with the baseline, the area of connexin43 and IL-1ß staining was increased in ipsilateral hemispheres 4 days after radiation. Over the following 3 weeks, the density of connexin43 gradually increased in parallel with progressive increases in GFAP, isolectin B-4, and fibrinogen labeling. The overexpression of connexin43 in parallel with IL-1ß spread into the affected brain regions first. Further intensified upregulation of connexin43 was associated with escalated astrocytosis, microgliosis, and blood-brain barrier breach. Connexin43-mediated inflammation may underlie radiation necrosis and further investigation of connexin43 hemichannel blockage is merited for the treatment of CRN.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Conexina 43/biossíntese , Lesões por Radiação/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Conexina 43/genética , Feminino , Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Necrose/metabolismo , Necrose/patologia , Lesões por Radiação/genética , Lesões por Radiação/patologia
19.
Clin Neurol Neurosurg ; 194: 105822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32334284

RESUMO

Bowel, bladder and sexual dysfunctions are widespread among people with spinal cord injury (SCI) and significantly impact their health and quality of life. Any non-invasive intervention which offers clinical benefits and safety is an advantage in restoring these functions. Despite the potential of non-invasive neuromodulation to improve the clinical outcomes in people with SCI, its characteristics are poorly defined, and reviews of efficacy are scarce in the literature. This study aimed to perform a systematic literature review of clinical studies investigating the use of non-invasive neuromodulation in restoring bowel, bladder and sexual functions following SCI. Electronic databases were searched, including the PubMed/Medline, EMBASE, Web of Science, Scopus and Cochrane databases, along with the reference lists of retrieved publications. Studies were eligible for inclusion if they adopted a clinical design based on participants with SCI, had main outcomes of restoration of bowel, bladder or sexual function and the intervention investigated was non-invasive neuromodulation. A total of 46 studies (combined sample of 1,801) were included in this systematic review, comprising studies of transcutaneous electrical nerve stimulation, magnetic stimulation and vibratory stimulation. Of the 46 studies, 7 were randomized controlled trials (RCTs), 36 were non-RCTs and 3 were case reports. Most studies (43/46) reported improvements in bowel (5/5), bladder (32/35) and sexual (6/6) dysfunction after SCI. However, the quality of the included studies was variable and associated with a high risk of bias. Thus, well-designed, blinded and sham-controlled RCTs with larger populations are required to establish clinical efficacy of these methods.


Assuntos
Incontinência Fecal/etiologia , Incontinência Fecal/reabilitação , Disfunções Sexuais Fisiológicas/etiologia , Disfunções Sexuais Fisiológicas/reabilitação , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/reabilitação , Incontinência Urinária/etiologia , Incontinência Urinária/reabilitação , Humanos , Magnetoterapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Estimulação Elétrica Nervosa Transcutânea , Vibração/uso terapêutico
20.
Placenta ; 94: 1-12, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32217265

RESUMO

BACKGROUND: It has been reported that during the culture of human placental explants, the syncytiotrophoblast dies between 3 and 24 h and is then replaced within 48 h by a new syncytiotrophoblast layer formed by the fusion of underlying cytotrophoblasts. Most frequently the death of the syncytiotrophoblast is indicated by the uptake of nuclear stains such as propidium iodide (PI). This process is reportedly similar in both early and late gestation placental explants. METHODS: We cultured first trimester placental explants for up to 48 h and tested membrane intactness by exposure to PI. Connexin and pannexin mRNAs were quantified by RT-PCR and protein levels determined by immunofluorescence. The syncytiotrophoblast membrane leak was determined by culturing explants in the presence of hemichannel blockers. Extrusion of extracellular vesicles from the syncytiotrophoblast was quantified. RESULTS: Nuclei of the syncytiotrophoblast were stained with PI following approximately 4 h of culture and this was prevented by culturing the explants with pannexin-1 blockers. Expression of pannexin-1 hemichannels increased during explant culture (p = 0.0027). Extracellular vesicles were most abundantly extruded from the explants during the first 3 h of culture and the temporal pattern of extrusion was unaltered by blocking hemichannels. DISCUSSION: We show the mechanism of uptake of nuclear non-viability stains into the syncytiotrophoblast during explant culture is via upregulation of pannexin 1 hemichannels. Contrary to suggestions by some, the production of extracellular vesicles from cultured placental explants is not an in vitro artefact resulting from the apparent death of the syncytiotrophoblast in explant cultures.


Assuntos
Morte Celular/fisiologia , Conexinas/genética , Proteínas do Tecido Nervoso/genética , Placenta/fisiologia , Técnicas de Cultura de Tecidos , Trofoblastos/fisiologia , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Conexina 43/fisiologia , Conexinas/antagonistas & inibidores , Conexinas/fisiologia , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Gravidez , Probenecid/farmacocinética , Propídio/metabolismo , RNA Mensageiro/análise , Fatores de Tempo , Trofoblastos/química , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA