Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(6): 2698-2721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744971

RESUMO

Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Ciclo Celular , Centríolos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Centríolos/metabolismo , Fosforilação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Sequência de Aminoácidos , Proteínas Quinases
2.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36530475

RESUMO

Germline stem cell proliferation in C. elegans requires activation of the GLP-1/Notch receptor, which is located on the germline plasma membrane and encoded by the glp-1 gene. We previously identified several genes whose products directly or indirectly promote activity of the GLP-1 signaling pathway by finding mutations that enhance the germline phenotype of a glp-1(ts) allele, glp-1(bn18) . Here, we report phenotypic and molecular analysis of a new ekl-1 allele, ekl-1(om92) , that enhances the glp-1(bn18) phenotype. ekl-1(om92) is a 244 bp deletion predicted to generate a frameshift and premature termination codon, yielding a severely truncated protein, suggesting it is a null allele.

3.
PLoS Genet ; 18(4): e1009799, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377871

RESUMO

Centrioles are submicron-scale, barrel-shaped organelles typically found in pairs, and play important roles in ciliogenesis and bipolar spindle assembly. In general, successful execution of centriole-dependent processes is highly reliant on the ability of the cell to stringently control centriole number. This in turn is mainly achieved through the precise duplication of centrioles during each S phase. Aberrations in centriole duplication disrupt spindle assembly and cilia-based signaling and have been linked to cancer, primary microcephaly and a variety of growth disorders. Studies aimed at understanding how centriole duplication is controlled have mainly focused on the post-translational regulation of two key components of this pathway: the master regulatory kinase ZYG-1/Plk4 and the scaffold component SAS-6. In contrast, how transcriptional control mechanisms might contribute to this process have not been well explored. Here we show that the chromatin remodeling protein CHD-1 contributes to the regulation of centriole duplication in the C. elegans embryo. Specifically, we find that loss of CHD-1 or inactivation of its ATPase activity can restore embryonic viability and centriole duplication to a strain expressing insufficient ZYG-1 activity. Interestingly, loss of CHD-1 is associated with increases in the levels of two ZYG-1-binding partners: SPD-2, the centriole receptor for ZYG-1 and SAS-6. Finally, we explore transcriptional regulatory networks governing centriole duplication and find that CHD-1 and a second transcription factor, EFL-1/DPL-1 cooperate to down regulate expression of CDK-2, which in turn promotes SAS-6 protein levels. Disruption of this regulatory network results in the overexpression of SAS-6 and the production of extra centrioles.


Assuntos
Proteínas de Caenorhabditis elegans , Centríolos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Centríolos/genética , Centríolos/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Quinases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Methods Mol Biol ; 2468: 43-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320559

RESUMO

One of the key attributes that has contributed to the popularity of Caenorhabditis elegans as a model system is its ability to survive freezing. By preserving stocks at ultralow temperature, researchers have been able to generate an unlimited number of strains without the burden of constantly maintaining them. This has facilitated the use of large-scale forward genetic screens and CRISPR-mediated genome editing where large numbers of novel and informative mutants can be generated. Traditionally, C. elegans and other nematodes were frozen using glycerol as a cryoprotectant. While effective, a large majority of animals do not survive a typical freeze-thaw cycle. Here I describe an alternative method based on the popular combination of DMSO and trehalose as a cryoprotectant. This method allows the survival of large numbers of worms and effectively protects most developmental stages including adults.


Assuntos
Dimetil Sulfóxido , Trealose , Animais , Caenorhabditis elegans/genética , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia
5.
Curr Biol ; 31(11): R730-R733, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102124

RESUMO

Centrioles are microtubule-based organelles that are embedded within pericentriolar material (PCM). Together, they comprise the centrosome, a microtubule-organizing center. PCM can sometimes exist in the absence of centrioles, but a new example of acentriolar PCM in neurons offers deeper insight into the relationship between these two entities.


Assuntos
Centrossomo , Centro Organizador dos Microtúbulos , Centríolos , Cílios , Microtúbulos
6.
Cells ; 7(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096824

RESUMO

Theodor Boveri is considered as the "father" of centrosome biology. Boveri's fundamental findings have laid the groundwork for decades of research on centrosomes. Here, we briefly review his early work on centrosomes and his first description of the centriole. Mainly focusing on centriole structure, duplication, and centriole assembly factors in C. elegans, we will highlight the role of this model in studying germ line centrosomes in nematodes. Last but not least, we will point to future directions of the C. elegans centrosome field.

7.
Dev Biol ; 441(1): 52-66, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29886128

RESUMO

CDK11, a member of the cyclin-dependent kinase family, has been implicated in a diverse array of functions including transcription, RNA processing, sister chromatid cohesion, spindle assembly, centriole duplication and apoptosis. Despite its involvement in many essential functions, little is known about the requirements for CDK11 and its partner Cyclin L in a developing multicellular organism. Here we investigate the function of CDK11 and Cyclin L during development of the nematode Caenorhabditis elegans. Worms express two CDK11 proteins encoded by distinct loci: CDK-11.1 is essential for normal male and female fertility and is broadly expressed in the nuclei of somatic and germ line cells, while CDK-11.2 is nonessential and is enriched in hermaphrodite germ line nuclei beginning in mid pachytene. Hermaphrodites lacking CDK-11.1 develop normally but possess fewer mature sperm and oocytes and do not fully activate the RAS-ERK pathway that is required for oocyte production in response to environmental cues. Most of the sperm and eggs that are produced in cdk-11.1 null animals appear to complete development normally but fail to engage in sperm-oocyte signaling suggesting that CDK-11.1 is needed at multiple points in gametogenesis. Finally, we find that CDK-11.1 and CDK-11.2 function redundantly during embryonic and postembryonic development and likely do so in association with Cyclin L. Our results thus define multiple requirements for CDK-11-Cyclin L during animal development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Oogênese/fisiologia , Espermatogênese/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Feminino , Fertilidade/fisiologia , Masculino
8.
PLoS Genet ; 13(1): e1006543, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103229

RESUMO

In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Centríolos/metabolismo , Regulação para Baixo , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Mutação , Proteínas Quinases/genética , Proteína Fosfatase 1/genética
9.
G3 (Bethesda) ; 6(3): 709-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26772748

RESUMO

Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.


Assuntos
Caenorhabditis elegans/metabolismo , Centríolos/metabolismo , Fatores de Transcrição E2F/metabolismo , Complexos Multiproteicos/metabolismo , Fator de Transcrição DP1/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Divisão Celular/genética , Fatores de Transcrição E2F/antagonistas & inibidores , Regulação da Expressão Gênica , Genes Letais , Genoma Helmíntico , Mutação , Fator de Transcrição DP1/antagonistas & inibidores , Transcrição Gênica
10.
Methods Mol Biol ; 1075: 257-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24052357

RESUMO

The microtubule cytoskeleton plays important roles in a number of cellular processes including cell division, establishing and maintaining cell architecture and polarity, and intracellular trafficking. The identification and characterization of factors required for the proper functioning of the microtubule cytoskeleton have been aided by approaches that combine sensitive and rapid methods for high-resolution optical imaging, such as confocal microscopy, with the powerful genetics available in model organisms. Here we present methods for confocal imaging of live and fixed tissues of the nematode C. elegans, a model organism that has been employed with great success to study the microtubule cytoskeleton and its roles in cell division and cell polarity.


Assuntos
Caenorhabditis elegans/ultraestrutura , Citoesqueleto/ultraestrutura , Células Germinativas/ultraestrutura , Microscopia Confocal/métodos , Animais , Caenorhabditis elegans/embriologia , Divisão Celular , Polaridade Celular , Microtúbulos/ultraestrutura
11.
G3 (Bethesda) ; 4(2): 231-41, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24347622

RESUMO

Screening for suppressor mutations is a powerful method to isolate genes that function in a common pathway or process. Because suppressor mutations often do not have phenotypes on their own, cloning of suppressor loci can be challenging. A method combining whole-genome sequencing (WGS) and single nucleotide polymorphism (SNP) mapping (WGS/SNP mapping) was developed to identify mutations with visible phenotypes in C. elegans. We show here that WGS/SNP mapping is an efficient method to map suppressor mutations without the need for previous phenotypic characterization. Using RNA-mediated interference to test candidate loci identified by WGS/SNP mapping, we identified 10 extragenic and six intragenic suppressors of mbk-2, a DYRK family kinase required for the transition from oocyte to zygote. Remarkably, seven suppressors are mutations in cell-cycle regulators that extend the timing of the oocyte-to-zygote transition.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Epistasia Genética , Genoma Helmíntico , Proteínas Tirosina Quinases/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Domínio Catalítico , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , Análise de Sequência de DNA
12.
J Cell Sci ; 125(Pt 15): 3535-44, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22623721

RESUMO

The correct segregation of DNA during cell division requires formation of a bipolar spindle, organized at each pole by a centrosome. The regulation of centrosome duplication such that each mitotic cell has exactly two centrosomes is therefore of central importance to cell division. Deregulation of centrosome duplication causes the appearance of supernumerary centrosomes, which are a hallmark of many cancer cells and can contribute to tumorigenesis. Overexpression of the kinase Plk4, which is required for centrosome duplication, causes the formation of extra centrosomes, and aberrant Plk4 expression levels are associated with cancer. Data from Drosophila and human cells show that Plk4 levels are regulated by the SCF ubiquitin ligase and proteasomal degradation. Recognition of Plk4 by the SCF complex is mediated by the F-box protein Slimb/ßTrCP. We show that levels of the C. elegans Plk4 homolog ZYG-1 are elevated by impairing proteasome or SCF function, indicating that ZYG-1 is regulated by a conserved mechanism. In C. elegans, similar to Drosophila and humans, we find that the Slimb/ßTrCP homolog LIN-23 regulates ZYG-1 levels. In addition, we show that a second F-box protein, SEL-10, also contributes to ZYG-1 regulation. Co-depletion of LIN-23 and SEL-10 suggests these proteins function cooperatively. Because SEL-10 is the homolog of human FBW7, which is frequently mutated in cancer, our findings have implications for understanding tumorigenesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas F-Box/metabolismo , Proteínas Quinases/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Centríolos/genética , Centríolos/metabolismo , Proteínas Culina/metabolismo , Células HEK293 , Humanos , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteínas Ligases SKP Culina F-Box/metabolismo
13.
Curr Biol ; 21(15): 1259-67, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21802300

RESUMO

BACKGROUND: The ways in which cells set the size of intracellular structures is an important but largely unsolved problem [1]. Early embryonic divisions pose special problems in this regard. Many checkpoints common in somatic cells are missing from these divisions, which are characterized by rapid reductions in cell size and short cell cycles [2]. Embryonic cells must therefore possess simple and robust mechanisms that allow the size of many of their intracellular structures to rapidly scale with cell size. RESULTS: Here, we study the mechanism by which one structure, the centrosome, scales in size during the early embryonic divisions of C. elegans. We show that centrosome size is directly related to cell size and is independent of lineage. Two findings suggest that the total amount of maternally supplied centrosome proteins could limit centrosome size. First, the combined volume of all centrosomes formed at any one time in the developing embryo is constant. Second, the total volume of centrosomes in any one cell is independent of centrosome number. By increasing the amount of centrosome proteins in the cell, we provide evidence that one component that limits centrosome size is the conserved pericentriolar material protein SPD-2 [3], which we show binds to and targets polo-like kinase 1 [3, 4] to centrosomes. CONCLUSIONS: We propose a limiting component hypothesis, in which the volume of the cell sets centrosome size by limiting the total amount of centrosome components. This idea could be a general mechanism for setting the size of intracellular organelles during development.


Assuntos
Caenorhabditis elegans/embriologia , Centrossomo , Embrião não Mamífero/metabolismo , Animais , Ciclo Celular , Tamanho Celular
14.
Dev Cell ; 20(4): 563-71, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21497766

RESUMO

Centrioles play a crucial role in mitotic spindle assembly and duplicate precisely once per cell cycle. In worms, flies, and humans, centriole assembly is dependent upon a key regulatory kinase (ZYG-1/Sak/Plk4) and its downstream effectors SAS-5 and SAS-6. Here we report a role for protein phosphatase 2A (PP2A) in centriole duplication. We find that the PP2A catalytic subunit LET-92, the scaffolding subunit PAA-1, and the B55 regulatory subunit SUR-6 function together to positively regulate centriole assembly. In PP2A-SUR-6-depleted embryos, the levels of ZYG-1 and SAS-5 are reduced and the ZYG-1- and SAS-5-dependent recruitment of SAS-6 to the nascent centriole fails. We show that PP2A physically associates with SAS-5 in vivo and that inhibiting proteolysis can rescue SAS-5 levels and the centriole duplication defect of PP2A-depleted embryos. Together, our findings indicate that PP2A-SUR-6 promotes centriole assembly by protecting ZYG-1 and SAS-5 from degradation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Centríolos/metabolismo , Duplicação Gênica , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Centríolos/genética , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética
15.
J Cell Sci ; 123(Pt 5): 795-805, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20144993

RESUMO

Centriole duplication is of crucial importance during both mitotic and male meiotic divisions, but it is currently not known whether this process is regulated differently during the two modes of division. In Caenorhabditis elegans, the kinase ZYG-1 plays an essential role in both mitotic and meiotic centriole duplication. We have found that the C-terminus of ZYG-1 is necessary and sufficient for targeting to centrosomes and is important for differentiating mitotic and meiotic centriole duplication. Small truncations of the C-terminus dramatically lower the level of ZYG-1 at mitotic centrosomes but have little effect on the level of ZYG-1 at meiotic centrosomes. Interestingly, truncation of ZYG-1 blocks centrosome duplication in the mitotic cycle but leads to centrosome amplification in the meiotic cycle. Meiotic centriole amplification appears to result from the overduplication of centrioles during meiosis I and leads to the formation of multipolar meiosis II spindles. The extra centrioles also disrupt spermatogenesis by inducing the formation of supernumerary fertilization-competent spermatids that contain abnormal numbers of chromosomes and centrioles. Our data reveal differences in the regulation of mitotic and meiotic centrosome duplication, particularly with regard to ZYG-1 activity, and reveal an important role for centrosomes in spermatid formation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Centríolos/metabolismo , Meiose/fisiologia , Mitose/fisiologia , Proteínas Quinases/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Centríolos/genética , Centrossomo/metabolismo , Immunoblotting , Masculino , Meiose/genética , Microscopia Confocal , Microscopia Eletrônica , Mitose/genética , Proteínas Quinases/genética , Espermatócitos/citologia , Espermatócitos/metabolismo
16.
Mol Biol Cell ; 21(2): 266-77, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19923324

RESUMO

The anterior-posterior axis of the Caenorhabditis elegans embryo is elaborated at the one-cell stage by the polarization of the partitioning (PAR) proteins at the cell cortex. Polarization is established under the control of the Rho GTPase RHO-1 and is maintained by the Rho GTPase CDC-42. To understand more clearly the role of the Rho family GTPases in polarization and division of the early embryo, we constructed a fluorescent biosensor to determine the localization of CDC-42 activity in the living embryo. A genetic screen using this biosensor identified one positive (putative guanine nucleotide exchange factor [GEF]) and one negative (putative GTPase activating protein [GAP]) regulator of CDC-42 activity: CGEF-1 and CHIN-1. CGEF-1 was required for robust activation, whereas CHIN-1 restricted the spatial extent of CDC-42 activity. Genetic studies placed CHIN-1 in a novel regulatory loop, parallel to loop described previously, that maintains cortical PAR polarity. We found that polarized distributions of the nonmuscle myosin NMY-2 at the cell cortex are independently produced by the actions of RHO-1, and its effector kinase LET-502, during establishment phase and CDC-42, and its effector kinase MRCK-1, during maintenance phase. CHIN-1 restricted NMY-2 recruitment to the anterior during maintenance phase, consistent with its role in polarizing CDC-42 activity during this phase.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Divisão Celular , Embrião não Mamífero/citologia , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Polaridade Celular , Embrião não Mamífero/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Miosina Tipo II/metabolismo , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
17.
Dev Cell ; 15(6): 901-12, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19081077

RESUMO

Microtubules are organized by the centrosome, a dynamic organelle that exhibits changes in both size and number during the cell cycle. Here we show that SZY-20, a putative RNA-binding protein, plays a critical role in limiting centrosome size in C. elegans. SZY-20 localizes in part to centrosomes and in its absence centrosomes possess increased levels of centriolar and pericentriolar components including gamma-tubulin and the centriole duplication factors ZYG-1 and SPD-2. These enlarged centrosomes possess normal centrioles, nucleate more microtubules, and fail to properly direct a number of microtubule-dependent processes. Depletion of ZYG-1 restores normal centrosome size and function to szy-20 mutants, whereas loss of szy-20 suppresses the centrosome duplication defects in both zyg-1 and spd-2 mutants. Our results describe a pathway that determines centrosome size and implicate centriole duplication factors in this process.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Centrossomo/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/fisiologia , Alelos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Centríolos/ultraestrutura , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Genéticos , Mutação , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Curr Opin Cell Biol ; 20(6): 688-93, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18840522

RESUMO

Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.


Assuntos
Centríolos/fisiologia , Animais , Ciclo Celular , Divisão Celular , Humanos , Microtúbulos/metabolismo , Modelos Biológicos
19.
Methods ; 41(2): 190-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17189861

RESUMO

Much of the pioneering work on the genetics of cell cycle regulation was accomplished using budding and fission yeast. The relative simplicity of these single-celled organisms allowed investigators to readily identify and assign roles to individual genes. While the molecular mechanisms worked out in yeast are more or less identical to those operating in higher organisms, additional layers of control must exist in multicellular organisms to coordinate the timing of developmental events occurring in different cells and tissues. Here we discuss experimental approaches for studying cell cycle processes in the nematode Caenorhabditis elegans.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Inativação Gênica/fisiologia , Genes cdc/fisiologia , Oócitos/crescimento & desenvolvimento , RNA Interferente Pequeno/farmacologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inativação Gênica/efeitos dos fármacos , Genes cdc/efeitos dos fármacos , Microscopia Confocal , Oócitos/citologia , Oócitos/efeitos dos fármacos
20.
Dev Cell ; 6(4): 511-23, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15068791

RESUMO

Centrosomes are major determinants of mitotic spindle structure, but the mechanisms regulating their behavior remain poorly understood. The spd-2 gene of C. elegans is required for centrosome assembly or "maturation." Here we show that spd-2 encodes a coiled-coil protein that localizes within pericentriolar material (PCM) and in the immediate vicinity of centrioles. During maturation, SPD-2 gradually accumulates at the centrosome in a manner that is partially dependent on Aurora-A kinase and cytoplasmic dynein. Interestingly, SPD-2 interacts genetically with dynein heavy chain and SPD-5, another coiled-coil protein required for centrosome maturation. SPD-2 and SPD-5 are codependent for localization to the PCM, but SPD-2 localizes to centrioles independently of SPD-5. Surprisingly, we also find that SPD-2 is required for centrosome duplication and genetically interacts with ZYG-1, a kinase required for duplication. Thus, we have identified SPD-2 as a factor critical for the two basic functions of the centrosome-microtubule organization and duplication.


Assuntos
Proteínas de Caenorhabditis elegans/isolamento & purificação , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Centrossomo/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Mitose/genética , Fuso Acromático/metabolismo , Sequência de Aminoácidos/genética , Animais , Aurora Quinases , Sequência de Bases/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Centríolos/genética , Centríolos/metabolismo , DNA Complementar/análise , DNA Complementar/genética , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos , Fuso Acromático/genética , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA