Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898283

RESUMO

Glassy polymers are generally stiff and strong yet have limited extensibility1. By swelling with solvent, glassy polymers can become gels that are soft and weak yet have enhanced extensibility1-3. The marked changes in properties arise from the solvent increasing free volume between chains while weakening polymer-polymer interactions. Here we show that solvating polar polymers with ionic liquids (that is, ionogels4,5) at appropriate concentrations can produce a unique class of materials called glassy gels with desirable properties of both glasses and gels. The ionic liquid increases free volume and therefore extensibility despite the absence of conventional solvent (for example, water). Yet, the ionic liquid forms strong and abundant non-covalent crosslinks between polymer chains to render a stiff, tough, glassy, and homogeneous network (that is, no phase separation)6, at room temperature. Despite being more than 54 wt% liquid, the glassy gels exhibit enormous fracture strength (42 MPa), toughness (110 MJ m-3), yield strength (73 MPa) and Young's modulus (1 GPa). These values are similar to those of thermoplastics such as polyethylene, yet unlike thermoplastics, the glassy gels can be deformed up to 670% strain with full and rapid recovery on heating. These transparent materials form by a one-step polymerization and have impressive adhesive, self-healing and shape-memory properties.

2.
Dimens Crit Care Nurs ; 42(6): 310-318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756502

RESUMO

BACKGROUND: Although previous studies have established the association of medications with anticholinergic adverse effects and xerostomia, anticholinergic burden and xerostomia in critical care settings are poorly characterized. The objective of this study was to determine the impact of medication burdens associated with anticholinergic adverse effects, particularly the occurrence of xerostomia (dry mouth) in a critical care setting. In addition, this study explored the correlation between the timing of the first instance of xerostomia and the administration timing of medication known to have anticholinergic adverse effects. METHODS: A retrospective case-control study was used with the MIMIC (Medical Information Mart for Intensive Care) III database. The MIMIC-III clinical database is a publicly available, deidentified, health-related database with more than 40 000 patients in critical care units from 2001 to 2012. Cases of xerostomia (n = 1344) were selected from clinical notes reporting "dry mouth," "xerostomia," or evidence of pharmacological treatment for xerostomia; control (n = 4032) was selected using the propensity analysis with 1:3 matching on covariates (eg, age, sex, race, ethnicity, and length of stay). The anticholinergic burden was quantified as the cumulative effect of anticholinergic activities using the Anticholinergic Burden Scale. RESULTS: Anticholinergic burden significantly differed between xerostomia patients and control subjects (P = .04). The length of stay was a statistically significant factor in xerostomia. The probability of developing the symptom of xerostomia within 24 hours was .95 (95%) for patients of xerostomia. CONCLUSIONS: Anticholinergic Burden Scale is associated with xerostomia in the critical care setting, particularly within 24 hours after admission. It is crucial to carefully evaluate alternative options for medications that may have potential anticholinergic adverse effects. This evaluation should include assessing the balance between the benefits and harms, considering the probability of withdrawal reactions, and prioritizing deprescribing whenever feasible within the initial 24-hour period.


Assuntos
Antagonistas Colinérgicos , Xerostomia , Humanos , Antagonistas Colinérgicos/efeitos adversos , Estudos Retrospectivos , Estudos de Casos e Controles , Xerostomia/induzido quimicamente , Xerostomia/tratamento farmacológico , Xerostomia/epidemiologia , Cuidados Críticos
3.
ACS Appl Mater Interfaces ; 14(47): 53129-53138, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383747

RESUMO

A semitransparent shape memory polymer (SMP):silver nanowire (AgNW) composite is demonstrated to be capable of low-temperature actuation, thus making it attractive for wearable electronics applications that require intimate contact with the human body. We demonstrate that the SMP:AgNW composite has tunable electrical and optical transparency through variation of the AgNW loading and that the AgNW loading did not significantly change the mechanical behavior of the SMP. The SMP composite is also capable of electrical actuation through Joule heating, where applying a 4 V bias across the AgNWs resulted in full shape recovery. The SMP was found to have high strain sensitivity at both small (<1%) and large (over 10%) applied strain. The SMP could sense strains as low as 0.6% with a gauge factor of 8.2. The SMP composite was then utilized as a touch sensor, able to sense and differentiate tapping and pressing. Finally, the composite was applied as a wearable ring that was thermally actuated to conformably fit onto a finger as a touch sensor. The ring sensor was able to sense finger tapping, pressing, and bending with high signal-to-noise ratios. These results demonstrate that SMP:AgNW composites are a promising design approach for application in wearable electronics.


Assuntos
Nanofios , Materiais Inteligentes , Dispositivos Eletrônicos Vestíveis , Humanos , Prata , Tato
4.
Sci Adv ; 7(10)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33658196

RESUMO

Combining hyperspectral and polarimetric imaging provides a powerful sensing modality with broad applications from astronomy to biology. Existing methods rely on temporal data acquisition or snapshot imaging of spatially separated detectors. These approaches incur fundamental artifacts that degrade imaging performance. To overcome these limitations, we present a stomatopod-inspired sensor capable of snapshot hyperspectral and polarization sensing in a single pixel. The design consists of stacking polarization-sensitive organic photovoltaics (P-OPVs) and polymer retarders. Multiple spectral and polarization channels are obtained by exploiting the P-OPVs' anisotropic response and the retarders' dispersion. We show that the design can sense 15 spectral channels over a 350-nanometer bandwidth. A detector is also experimentally demonstrated, which simultaneously registers four spectral channels and three polarization channels. The sensor showcases the myriad degrees of freedom offered by organic semiconductors that are not available in inorganics and heralds a fundamentally unexplored route for simultaneous spectral and polarimetric imaging.

5.
Appl Opt ; 60(8): 2314-2323, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690330

RESUMO

Using organic photodetectors for multispectral sensing is attractive due to their unique capabilities to tune spectral response, transmittance, and polarization sensitivity. Existing methods lack tandem multicolor detection and exhibit high spectral cross talk. We exploit the polarization sensitivity of organic photodetectors, together with birefringent optical filters to design single-pixel multispectral detectors that achieve high spectral selectivity and good radiometric performance. Two different architectures are explored and optimized, including the Solc-based and multitwist-retarder-based organic photodetectors. Although the former demonstrated a higher spectral resolution, the latter enables a more compact sensor as well as greater flexibility in device fabrication.

6.
Nat Mater ; 20(4): 525-532, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432145

RESUMO

Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property-function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy Ea scales linearly with the enthalpic interaction parameters χH between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in Ea to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property-function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Luz Solar , Difusão , Cinética , Modelos Químicos , Polímeros/química , Termodinâmica
7.
ACS Macro Lett ; 10(9): 1107-1112, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549074

RESUMO

A method of determining the mechanical relaxation behavior of polymer thin films is presented that employs a kirigami-inspired sample support. The film of interest is placed on the kirigami support and loaded into a dynamic mechanical analyzer. When the composite is placed in tension, the substrate effectively transfers the load to the film of interest. We demonstrate the approach using a number of polymers and conjugated polymer: small molecule blends relevant for organic photovoltaics. The kirigami-inspired method is found to provide an accurate view of thermal relaxation behavior in polymer thin films, including a quantitative assessment of the film storage modulus. The method is particularly valuable in thin films where film morphology is highly dependent on processing conditions. We show that differences in casting conditions have a clear impact on the thermal relaxation of both the neat and blend conjugated polymer films.

8.
ACS Appl Mater Interfaces ; 12(45): 50675-50683, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33136358

RESUMO

Stretchable electronics are poised to revolutionize personal healthcare and robotics, where they enable distributed and conformal sensors. Transistors are fundamental building blocks of electronics, and there is a need to produce stretchable transistors using low-cost and scalable fabrication techniques. Here, we introduce a facile fabrication approach using laser patterning and transfer printing to achieve high-performance, solution-processed intrinsically stretchable organic thin-film transistors (OTFTs). The device consists of Ag nanowire (NW) electrodes, where the source and drain electrodes are patterned using laser ablation. The Ag NWs are then partially embedded in a poly(dimethylsiloxane) (PDMS) matrix. The electrodes are combined with a PDMS dielectric and polymer semiconductor, where the layers are individually transfer printed to complete the OTFT. Two polymer semiconductors, DPP-DTT and DPP-4T, are considered and show stable operation under the cyclic strain of 20 and 40%, respectively. The OTFTs maintain electrical performance by adopting a buckled structure after the first stretch-release cycle. The conformability and stretchability of the OTFT is also demonstrated by operating the transistor while adhered to a finger being flexed. The ability to pattern highly conductive Ag NW networks using laser ablation to pattern electrodes as well as interconnects provides a simple strategy to produce complex stretchable OTFT-based circuits.

9.
Appl Opt ; 59(1): 156-164, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225283

RESUMO

Polarimeters have broad applications in remote sensing, astronomy, and biomedical imaging to measure the emitted, reflected, or transmitted state of polarization. An intrinsic coincident (IC) full-Stokes polarimeter was previously demonstrated by our group, in a free space configuration, by using stain-aligned polymer-based organic photovoltaics. To minimize the model's complexity, these were tilted to avoid crosstalk from back-reflections. We present a theoretical model of a monolithic IC polarimeter that considers the back-reflection's influence for on-axis light. The model was validated using a monolithic four-detector polarimeter, which achieved an error of less than 3%. Additionally, an off-axis model was produced and validated for a simpler two detector polarimeter, demonstrating an error between the TM and TE polarized components of less than 3% for angles spanning an 18° incidence cone.

10.
Adv Mater ; 32(15): e1902343, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31464046

RESUMO

Nanomaterial-enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial-enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human-machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real-world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial-enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human-machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Fenômenos Fisiológicos da Pele , Técnicas Biossensoriais/instrumentação , Pressão Sanguínea , Eletrocardiografia , Desenho de Equipamento , Humanos , Armazenamento e Recuperação da Informação , Compostos Orgânicos Voláteis/análise , Dispositivos Eletrônicos Vestíveis
11.
Adv Mater ; 31(17): e1808153, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30873701

RESUMO

Casting of a donor:acceptor bulk-heterojunction structure from a single ink has been the predominant fabrication method of organic photovoltaics (OPVs). Despite the success of such bulk heterojunctions, the task ofcontrolling the microstructure in a single casting process has been arduous and alternative approaches are desired. To achieve OPVs with a desirable microstructure, a facile and eco-compatible sequential deposition approach is demonstrated for polymer/small-molecule pairs. Using a nominally amorphous polymer as the model material, the profound influence of casting solvent is shown on the molecular ordering of the film, and thus the device performance and mesoscale morphology of sequentially deposited OPVs can be tuned. Static and in situ X-ray scattering indicate that applying (R)-(+)-limonene is able to greatly promote the molecular order of weakly crystalline polymers and form the largest domain spacing exclusively, which correlates well with the best efficiency of 12.5% in sequentially deposited devices. The sequentially cast device generally outperforms its control device based on traditional single-ink bulk-heterojunction structure. More crucially, a simple polymer:solvent interaction parameter χ is positively correlated with domain spacing in these sequentially deposited devices. These findings shed light on innovative approaches to rationally create environmentally friendly and highly efficient electronics.

12.
Adv Mater ; 31(17): e1808279, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30882967

RESUMO

Organic solar cells (OSCs) are one of the most promising cost-effective options for utilizing solar energy, and, while the field of OSCs has progressed rapidly in device performance in the past few years, the stability of nonfullerene OSCs has received less attention. Developing devices with both high performance and long-term stability remains challenging, particularly if the material choice is restricted by roll-to-roll and benign solvent processing requirements and desirable mechanical durability. Building upon the ink (toluene:FTAZ:IT-M) that broke the 10% benchmark when blade-coated in air, a second donor material (PBDB-T) is introduced to stabilize and enhance performance with power conversion efficiency over 13% while keeping toluene as the solvent. More importantly, the ternary OSCs exhibit excellent thermal stability and storage stability while retaining high ductility. The excellent performance and stability are mainly attributed to the inhibition of the crystallization of nonfullerene small-molecular acceptors (SMAs) by introducing a stiff donor that also shows low miscibility with the nonfullerene SMA and a slightly higher highest occupied molecular orbital (HOMO) than the host polymer. The study indicates that improved stability and performance can be achieved in a synergistic way without significant embrittlement, which will accelerate the future development and application of nonfullerene OSCs.

13.
ACS Appl Mater Interfaces ; 11(3): 3280-3289, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30592202

RESUMO

Stretchable conductive polymer films are required to survive not only large tensile strain but also stay functional after the reduction in applied strain. In the deformation process, the elastomer substrate that is typically employed plays a critical role in response to the polymer film. In this study, we examine the role of a polydimethylsiloxane (PDMS) elastomer substrate on the ability to achieve stretchable PDPP-4T films. In particular, we consider the adhesion and near-surface modulus of the PDMS tuned through UV/ozone (UVO) treatment on the competition between film wrinkling and plastic deformation. We also consider the role of PDMS tension on the stability of films under cyclic strain. We find that increasing the near-surface modulus of the PDMS and maintaining the PDMS in tension throughout the cyclic strain process promote plastic deformation over film wrinkling. In addition, the UVO treatment increases film adhesion to the PDMS resulting in a significantly reduced film folding and delamination. For a 20 min UVO-treated PDMS, we show that a PDPP-4T film root-mean-square roughness is consistently below 3 nm for up to 100 strain cycles with a strain range of 40%. In addition, although the film is plastically deforming, the microstructural order is largely stable as probed by grazing incidence X-ray scattering and UV-visible spectroscopy. These results highlight the importance of neighboring elastomer characteristics on the ability to achieve stretchable polymer semiconductors.

14.
ACS Appl Mater Interfaces ; 10(37): 31560-31567, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148352

RESUMO

Polymer conductors that are solution-processable provide an opportunity to realize low-cost organic electronics. However, coating sequential layers can be hindered by poor surface wetting or dissolution of underlying layers. This has led to the use of transfer printing where solid film inks are transferred from a donor substrate to partially fabricated devices using a stamp. This approach typically requires favorable adhesion differences between the stamp, ink, and receiving substrate. Here, we present a shear-assisted organic printing (SHARP) technique that employs a shear load on a post-less polydimethylsiloxane (PDMS) elastomer stamp to print large-area polymer films that can overcome large unfavorable adhesion differences between the stamp and receiving substrate. We explore the limits of this process by transfer printing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films with varied formulation that tune the adhesive fracture energy. Using this platform, we show that the SHARP process is able to overcome a 10-fold unfavorable adhesion differential without the use of a patterned PDMS stamp, enabling large-area printing. The SHARP approach is then used to print PEDOT:PSS films in the fabrication of high-performance semitransparent organic solar cells.

15.
Adv Funct Mater ; 29(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-33061870

RESUMO

Intra- and intermolecular ordering greatly impact the electronic and optoelectronic properties of semiconducting polymers. Despite much prior efforts regarding molecular packing, the interrelationship between ordering of alkyl sidechains and conjugated backbones has not been fully detailed. We report here the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures. The sidechain ordering exhibits unusually large coherence lengths of at least 70 nm, induces torsional/twisting backbone disorder, and results in a vertically layered multilayer nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in-situ variable temperature scattering measurements in a model system PBnDT-FTAZ clearly delineate this competition of ordering that prevents the simultaneous long-range order of both moieties. The long-range sidechain ordering can be exploited as a transient state to fabricate PBnDT-FTAZ films with an atypical edge-on texture and 2.5x improved OFET mobility. The observed influence of ordering between the moieties implies that improved molecular design could produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths.

16.
ACS Appl Mater Interfaces ; 9(50): 43886-43892, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29188708

RESUMO

An all-polymer bulk heterojunction (BHJ) active layer that removes the use of commonly used small molecule electron acceptors is a promising approach to improve the thermomechanical behavior of organic solar cells. However, there has been limited research on their mechanical properties. Here, we report on the mechanical behavior of high-performance blade-coated all-polymer BHJ films cast using eco-friendly solvents. The mechanical properties considered include the elastic modulus, crack onset strain, and cohesive fracture energy. We show that the mechanical behavior of the blend is largely unaffected by significant changes in the segregation characteristics of the polymers, which was varied systematically through solvent formulation. In comparison to a polymer:fullerene BHJ counterpart, the all-polymer films were found to have lower stiffness and increased ductility. Yet, the fracture energy of the all-polymer films is not significantly improved compared to that of the polymer:fullerene films. This study highlights that improved mechanical behavior of all-polymer systems cannot be assumed, and that details of the molecular structure, molecular weight, and film morphology play an important role in both the optoelectronic and mechanical properties. Furthermore, we show that simple composite modeling provides a predictive tool for the mechanical properties of the polymer blend films, providing a framework to guide future optimization of the mechanical behavior.

17.
Adv Electron Mater ; 3(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28690975

RESUMO

Intrinsically stretchable semiconductors will facilitate the realization of seamlessly integrated stretchable electronics. However, to date demonstrations of intrinsically stretchable semiconductors have been limited. In this study, a new approach to achieve intrinsically stretchable semiconductors is introduced by blending a rigid high-performance donor-acceptor polymer semiconductor poly[4(4,4dihexadecyl4Hcyclopenta [1,2b:5,4b' ] dithiopen2yl) alt [1,2,5] thiadiazolo [3,4c] pyridine] (PCDTPT) with a ductile polymer semiconductor poly(3hexylthiophene) (P3HT). Under large tensile strains of up to 75%, the polymers are shown to orient in the direction of strain, and when the strain is reduced, the polymers reversibly deform. During cyclic strain, the local packing order of the polymers is shown to be remarkably stable. The saturated field effect charge mobility is shown to be consistently above 0.04 cm2 V-1s-1 for up to 100 strain cycles with strain ranging from 10% to 75% when the film is printed onto a rigid test bed. At the 75% strain state, the charge mobility is consistently above 0.15 cm2 V-1s-1. Ultimately, the polymer blend process introduced here results in an excellent combination of device performance and stretchability providing an effective approach to achieve intrinsically stretchable semiconductors.

18.
ACS Appl Mater Interfaces ; 8(22): 14037-45, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27200458

RESUMO

Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized.

19.
ACS Appl Mater Interfaces ; 7(48): 26726-34, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552721

RESUMO

Large strains are applied to liquid crystalline poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (pBTTT) films when held at elevated temperatures resulting in in-plane polymer alignment. We find that the polymer backbone aligns significantly in the direction of strain, and that the films maintain large quasi-domains similar to that found in spun-cast films on hydrophobic surfaces, highlighted by dark-field transmission electron microscopy imaging. The highly strained films also have nanoscale holes consistent with dewetting. Charge transport in the films is then characterized in a transistor configuration, where the field effect mobility is shown to increase in the direction of polymer backbone alignment, and decrease in the transverse direction. The highest saturated field-effect mobility was found to be 1.67 cm(2) V(-1) s(-1), representing one of the highest reported mobilities for this material system. The morphology of the oriented films demonstrated here contrast significantly with previous demonstrations of oriented pBTTT films that form a ribbon-like morphology, opening up opportunities to explore how differences in molecular packing features of oriented films impact charge transport. Results highlight the role of grain boundaries, differences in charge transport along the polymer backbone and π-stacking direction, and structural features that impact the field dependence of charge transport.

20.
ACS Appl Mater Interfaces ; 7(24): 13208-16, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26027430

RESUMO

The role of molecular orientation of a polar conjugated polymer in polymer-fullerene organic photovoltaic (OPV) cells is investigated. A planar heterojunction (PHJ) OPV cell composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is used as a model system to isolate the effect of the interfacial orientation on the photovoltaic properties. The molecular orientation of the aggregate P3HT relative to the PCBM layer is varied from highly edge-on (conjugated ring plane perpendicular to the interface plane) to appreciably face-on (ring plane parallel to the interface). It is found that as the P3HT stacking becomes more face-on there is a positive correlation to the OPV open-circuit voltage (V(OC)), attributed to a shift in the highest occupied molecular orbital (HOMO) energy level of P3HT. In addition, the PHJ OPV cell with a broad P3HT stacking orientation distribution has a V(OC) comparable to an archetypal bulk heterojunction (BHJ) device. These results suggest that, in the BHJ OPV cell, the hole energy level in the charge transfer state is defined in part by the orientation distribution of the P3HT at the interface with PCBM. Finally, the photoresponses of the devices are also shown to have a dependence on P3HT stacking orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA