Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 106(4): 173-187, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39048308

RESUMO

Folate-dependent one-carbon (C1) metabolism encompasses distinct cytosolic and mitochondrial pathways connected by an interchange among serine, glycine, and formate. In both the cytosol and mitochondria, folates exist as polyglutamates, with polyglutamylation catalyzed by folylpolyglutamate synthetase (FPGS), including cytosolic and mitochondrial isoforms. Serine is metabolized by serine hydroxymethyltransferase (SHMT)2 in the mitochondria and generates glycine and C1 units for cellular biosynthesis in the cytosol. AGF347 is a novel pyrrolo[3,2-day]pyrimidine antifolate that targets SHMT2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. FPGS is expressed in primary pancreatic cancer specimens, and FPGS levels correlate with in vitro efficacies of AGF347 toward human pancreatic cancer cells. MIA PaCa-2 pancreatic cancer cells with CRISPR knockout of FPGS were engineered to express doxycycline-inducible FPGS exclusively in the cytosol (cFPGS) or in both the cytosol and mitochondria (mFPGS). Folate and AGF347 accumulations increased in both the cytosol and mitochondria with increased mFPGS but were restricted to the cytosol with cFPGS. AGF347-Glu5 inhibited SHMT2 ∼19-fold greater than AGF347 By metabolomics analysis, mFPGS stimulated the C1 flux from serine in the mitochondria and de novo purine and dTTP synthesis far greater than cFPGS. mFPGS enhanced in vitro inhibition of MIA PaCa-2 cell proliferation by AGF347 (∼30-fold) more than cFPGS (∼4.9-fold). Similar results were seen with other pyrrolo[3,2-d]pyrimidine antifolates (AGF291, AGF320); however, elevated mFPGS adversely impacted inhibition by the nonclassical SHMT2/SHMT1 inhibitor SHIN1. These results suggest a critical role of mFPGS levels in determining antitumor efficacies of mitochondrial-targeted pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer. SIGNIFICANCE STATEMENT: AGF347 is a novel pyrrolo[3,2-d]pyrimidine antifolate that targets serine hydroxymethyltransferase (SHMT)2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. AGF347 accumulation increases with folylpolyglutamate synthetase (FPGS) levels in both the cytosol and mitochondria. Increased mitochondrial FPGS stimulated one-carbon metabolic fluxes in the cytosol and mitochondria and substantially enhanced in vitro inhibition of pancreatic cancer cells by AGF347. Mitochondrial FPGS levels play important roles in determining the antitumor efficacies of pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer.


Assuntos
Citosol , Antagonistas do Ácido Fólico , Mitocôndrias , Peptídeo Sintases , Humanos , Peptídeo Sintases/metabolismo , Peptídeo Sintases/antagonistas & inibidores , Citosol/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Antagonistas do Ácido Fólico/farmacologia , Linhagem Celular Tumoral , Carbono/metabolismo , Antineoplásicos/farmacologia , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ácido Fólico/metabolismo
2.
Mol Cancer Ther ; 23(6): 809-822, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377173

RESUMO

One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359, and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism, which offers a promising new platform for therapy.


Assuntos
Carbono , Carcinoma Epitelial do Ovário , Cisplatino , Citosol , Mitocôndrias , Neoplasias Ovarianas , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Feminino , Mitocôndrias/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose , Carbono/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Cisplatino/farmacologia , Animais , Camundongos , Citosol/metabolismo
3.
ACS Med Chem Lett ; 14(12): 1682-1691, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116433

RESUMO

Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.

4.
J Med Chem ; 66(16): 11294-11323, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37582241

RESUMO

Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and ß afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Hidroximetil e Formil Transferases , Neoplasias , Humanos , Antineoplásicos/química , Carbono , Citosol , Antagonistas do Ácido Fólico/química , Hidroximetil e Formil Transferases/metabolismo , Mitocôndrias , Neoplasias/metabolismo
5.
ACS Pharmacol Transl Sci ; 6(5): 748-770, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200803

RESUMO

Multitargeted agents with tumor selectivity result in reduced drug resistance and dose-limiting toxicities. We report 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with pyridine (3, 4), fluorine-substituted pyridine (5), phenyl (6, 7), and thiophene side chains (8, 9), for comparison with unsubstituted phenyl (1, 2) and thiophene side chain (10, 11) containing thieno[2,3-d]pyrimidine compounds. Compounds 3-9 inhibited proliferation of Chinese hamster ovary cells (CHO) expressing folate receptors (FRs) α or ß but not the reduced folate carrier (RFC); modest inhibition of CHO cells expressing the proton-coupled folate transporter (PCFT) by 4, 5, 6, and 9 was observed. Replacement of the side-chain 1',4'-phenyl ring with 2',5'-pyridyl, or 2',5'-pyridyl with a fluorine insertion ortho to l-glutamate resulted in increased potency toward FR-expressing CHO cells. Toward KB tumor cells, 4-9 were highly active (IC50's from 2.11 to 7.19 nM). By metabolite rescue in KB cells and in vitro enzyme assays, de novo purine biosynthesis was identified as a targeted pathway (at 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase)). Compound 9 was 17- to 882-fold more potent than previously reported compounds 2, 10, and 11 against GARFTase. By targeted metabolomics and metabolite rescue, 1, 2, and 6 also inhibited mitochondrial serine hydroxymethyl transferase 2 (SHMT2); enzyme assays confirmed inhibition of SHMT2. X-ray crystallographic structures were obtained for 4, 5, 9, and 10 with human GARFTase. This series affords an exciting new structural platform for potent multitargeted antitumor agents with FR transport selectivity.

7.
Sci Rep ; 12(1): 11346, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790779

RESUMO

Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRß is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRß-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias Ovarianas , Animais , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Pirimidinas/metabolismo , Microambiente Tumoral
8.
Sci Rep ; 11(1): 6389, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737637

RESUMO

There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT. We showed that cellular accumulations of extracellular folates were determined by the type and levels of the major folate transporters, with PCFT and RFC prevailing over FRα, depending on expression levels and pH. Based on patterns of cell proliferation in the presence of the inhibitors, we established transport redundancy for RFC and PCFT in pemetrexed uptake, and for PCFT and FRα in AGF94 uptake; uptake by PCFT predominated for pemetrexed and FRα for AGF94. For methotrexate and PT523, uptake by RFC predominated even in the presence of PCFT or FRα. For both classic (methotrexate, PT523) and FRα-targeted (AGF102) antifolates, anti-proliferative activities were antagonized by PCFT, likely due to its robust activity in mediating folate accumulation. Collectively, our findings describe a previously unrecognized interplay among the major folate transport systems that depends on transporter levels and extracellular pH, and that determines their contributions to the uptake and anti-tumor efficacies of targeted and untargeted antifolates.


Assuntos
Receptor 1 de Folato/genética , Ácido Fólico/metabolismo , Neoplasias/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Proteína Carregadora de Folato Reduzido/genética , Transporte Biológico/genética , Proliferação de Células/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/genética , Antagonistas do Ácido Fólico/farmacologia , Células HeLa , Humanos , Metotrexato/farmacologia , Neoplasias/genética , Neoplasias/metabolismo , Ornitina/análogos & derivados , Ornitina/farmacologia , Pemetrexede/farmacologia , Transportador de Folato Acoplado a Próton/metabolismo , Pterinas/farmacologia , Proteína Carregadora de Folato Reduzido/metabolismo
9.
Bioorg Med Chem ; 37: 116093, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773393

RESUMO

We discovered 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with 3-4 bridge carbons and side-chain thiophene or furan rings for dual targeting one-carbon (C1) metabolism in folate receptor- (FR) expressing cancers. Synthesis involved nine steps starting from the bromo-aryl carboxylate. From patterns of growth inhibition toward Chinese hamster ovary cells expressing FRα or FRß, the proton-coupled folate transporter or reduced folate carrier, specificity for uptake by FRs was confirmed. Anti-proliferative activities were demonstrated toward FRα-expressing KB tumor cells and NCI-IGROV1 ovarian cancer cells. Inhibition of de novo purine biosynthesis at both 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase and glycinamide ribonucleotide formyltransferase (GARFTase) was confirmed by metabolite rescue, metabolomics and enzyme assays. X-ray crystallographic structures were obtained with compounds 3-5 and human GARFTase. Our studies identify first-in-class C1 inhibitors with selective uptake by FRs and dual inhibition of enzyme targets in de novo purine biosynthesis, resulting in anti-tumor activity. This series affords an exciting new platform for selective multi-targeted anti-tumor agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Fosforribosilglicinamido Formiltransferase/antagonistas & inibidores , Pirimidinas/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Receptores de Folato com Âncoras de GPI/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Fosforribosilglicinamido Formiltransferase/metabolismo , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo
10.
Bioorg Med Chem ; 28(12): 115544, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32503687

RESUMO

Tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl compounds based on 2 were isosterically modified at the 4-carbon bridge by replacing the vicinal (C11) carbon by heteroatoms N (4), O (5) or S (6), or with an N-substituted formyl (7), trifluoroacetyl (8) or acetyl (9). Replacement with sulfur (6) afforded the most potent KB tumor cell inhibitor, ~6-fold better than the parent 2. In addition, 6 retained tumor transport selectivity via folate receptor (FR) α and -ß over the ubiquitous reduced folate carrier (RFC). FRα-mediated cell inhibition for 6 was generally equivalent to 2, while the FRß-mediated activity was improved by 16-fold over 2. N (4) and O (5) substitutions afforded similar tumor cell inhibitions as 2, with selectivity for FRα and -ß over RFC. The N-substituted analogs 7-9 also preserved transport selectivity for FRα and -ß over RFC. For FRα-expressing CHO cells, potencies were in the order of 8 > 7 > 9. Whereas 8 and 9 showed similar results with FRß-expressing CHO cells, 7 was ~16-fold more active than 2. By nucleoside rescue experiments, all the compounds inhibited de novo purine biosynthesis, likely at the step catalyzed by glycinamide ribonucleotide formyltransferase. Thus, heteroatom replacements of the CH2 in the bridge of 2 afford analogs with increased tumor cell inhibition that could provide advantages over 2, as well as tumor transport selectivity over clinically used antifolates including methotrexate and pemetrexed.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Receptor 1 de Folato/metabolismo , Receptor 2 de Folato/metabolismo , Ácido Fólico/metabolismo , Pirimidinas/química , Pirróis/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Células CHO , Domínio Catalítico , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Receptor 1 de Folato/química , Receptor 1 de Folato/genética , Receptor 2 de Folato/química , Receptor 2 de Folato/genética , Ácido Fólico/química , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fosforribosilglicinamido Formiltransferase/química , Fosforribosilglicinamido Formiltransferase/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirróis/metabolismo , Pirróis/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA