Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Expert Opin Ther Targets ; 28(5): 401-418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38871633

RESUMO

INTRODUCTION: Inflammasome complexes, especially NLRP3, have gained great attention as a potential therapeutic target in mood disorders. NLRP3 triggers a caspase 1-dependent release of the inflammatory cytokines IL-1ß and IL-18, and seems to interact with purinergic and kynurenine pathways, all of which are implicated in mood disorders development and progression. AREAS COVERED: Emerging evidence supports NLRP3 inflammasome as a promising pharmacological target for mood disorders. We discussed the available evidence from animal models and human studies and provided a reflection on drawbacks and perspectives for this novel target. EXPERT OPINION: Several studies have supported the involvement of NLRP3 inflammasome in MDD. However, most of the evidence comes from animal models. The role of NLRP3 inflammasome in BD as well as its anti-manic properties is not very clear and requires further exploration. There is evidence of anti-manic effects of P2×R7 antagonists associated with reduction in the brain levels of IL-1ß and TNF-α in a murine model of mania. The involvement of other NLRP3 inflammasome expressing cells besides microglia, like astrocytes, and of other inflammasome complexes in mood disorders also deserves further investigation. Preclinical and clinical characterization of NLRP3 and other inflammasomes in mood disorders is needed before considering translational approaches, including clinical trials.


Assuntos
Modelos Animais de Doenças , Inflamassomos , Terapia de Alvo Molecular , Transtornos do Humor , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/fisiopatologia , Camundongos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/fisiopatologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia
2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766008

RESUMO

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

3.
Gene Ther ; 31(5-6): 324-334, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627469

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Assuntos
Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Macrófagos , Microglia , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Macrófagos/metabolismo , Microglia/metabolismo , Masculino , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Exossomos/metabolismo , Substância Negra/metabolismo
4.
JMIR Res Protoc ; 12: e52199, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910166

RESUMO

BACKGROUND: Fatigue is a strong predictor of negative health outcomes in older adults. Kynurenine, a metabolite of tryptophan, is strongly associated with fatigue. Reductions in fatigue are observed with exercise; however, exercise training does not completely alleviate symptoms. Branched-chain amino acids (BCAAs) have been shown to have advantageous effects on exercise performance and compete with kynurenine for transport into the central nervous system. Thus, the combination of BCAA and exercise may exert synergized effects of mental and physical fatigue. Therefore, we hypothesize that BCAA added to exercise will shift kynurenine metabolism toward enhanced synthesis of kynurenic acid, thereby reducing fatigue. OBJECTIVE: This randomized, double-blind, placebo-controlled trial aims to compare the effects of acute (approximately 45 min) and chronic (8 wk) exercise with and without BCAA supplementation on mental and physical fatigue and assess whether the hypothesized outcomes are modulated by changes in kynurenine metabolism in 30 older adults (n=15, 50% per group). METHODS: Older adults (aged 60-80 y) who do not exercise >2 days per week and self-report fatigue (≥3 on a scale of 1-10) will be recruited. Participants will be randomized to either the exercise+BCAA group or exercise+placebo group. Participants will engage in high-volume, moderate-intensity, whole-body exercise training (aerobic and resistance exercise; either in-person or web-based sessions) 3 times per week for 8 weeks. In addition, participants will consume daily either 100 mg/kg body weight of BCAA (2:1:1 leucine:isoleucine:valine) or placebo (maltodextrin) throughout the 8-week intervention. BCAA and placebo powders will be identical in color and dissolved in 400 mL of water and 2.5 g of a calorie-free water flavor enhancer. Muscle biopsies will be collected before and after the intervention after a 12-hour fast to examine changes in the biomarkers of tryptophan metabolism and inflammation. Our primary outcomes include changes in mental and physical fatigue and metabolism after the 8-week exercise training between the 2 groups. Mental and physical fatigue will be measured before and after the intervention. Mental fatigue will be subjectively assessed through the completion of validated questionnaires. Physical fatigue will be measured by isometric handgrip, 1-repetition maximum, chair rise, 400-meter walk, and cardiopulmonary exercise tests. RESULTS: The study was funded in March 2022, with an anticipated projected data collection period lasting from January 2023 through December 2023. CONCLUSIONS: The discovery that kynurenine concentrations are associated with fatigue and are responsive to BCAA supplementation during exercise training could have important implications for the development of future interventions, both lifestyle and pharmacologic, to treat fatigue in older adults. TRIAL REGISTRATION: ClinicalTrials.gov NCT05484661; https://www.clinicaltrials.gov/study/NCT05484661. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/52199.

5.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227694

RESUMO

Neuropathic pain is one of the most important clinical consequences of injury to the somatosensory system. Nevertheless, the critical pathophysiological mechanisms involved in neuropathic pain development are poorly understood. In this study, we found that neuropathic pain is abrogated when the kynurenine metabolic pathway (KYNPATH) initiated by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is ablated pharmacologically or genetically. Mechanistically, it was found that IDO1-expressing dendritic cells (DCs) accumulated in the dorsal root leptomeninges and led to an increase in kynurenine levels in the spinal cord. In the spinal cord, kynurenine was metabolized by kynurenine-3-monooxygenase-expressing astrocytes into the pronociceptive metabolite 3-hydroxykynurenine. Ultimately, 3-hydroxyanthranilate 3,4-dioxygenase-derived quinolinic acid formed in the final step of the canonical KYNPATH was also involved in neuropathic pain development through the activation of the glutamatergic N-methyl-D-aspartate receptor. In conclusion, these data revealed a role for DCs driving neuropathic pain development through elevation of the KYNPATH. This paradigm offers potential new targets for drug development against this type of chronic pain.


Assuntos
Cinurenina , Neuralgia , Animais , Camundongos , Cinurenina/metabolismo , Ácido Quinolínico/metabolismo , Redes e Vias Metabólicas , Células Dendríticas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
6.
Arch Phys Med Rehabil ; 103(11): 2077-2084, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35839921

RESUMO

OBJECTIVE: To investigate the effect of aerobic exercise vs control (stretching/balance) on inflammatory and oxidative stress biomarkers in stroke survivors and whether these changes are associated with improvements in physical and metabolic health. DESIGN: Randomized controlled trial. SETTING: The general communities of Baltimore, Maryland, and Atlanta, Georgia. PARTICIPANTS: Two hundred forty-six older (>50 years), chronic (>6 months) survivors of stroke (N=246) with hemiparetic gait were recruited, with 51 completing pre-intervention testing and 39 completing postintervention testing. Participants were required to have completed all conventional physical therapy and be capable of walking 3 minutes on a treadmill (N=246). INTERVENTION: Participants completed 6 months of 2 times/wk stretching or balance (ST; n=19) or 3 times/wk aerobic treadmill rehabilitation (TM; n=20;). MAIN OUTCOME MEASURE(S): Peak oxygen uptake rate (V̇o2peak), 6-minute walking distance (6MWD), fasting plasma glucose, insulin, oxidative stress, and inflammatory biomarkers were assessed pre- and postintervention. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was calculated. RESULTS: Physical function and metabolic health parameters tended to improve after TM but not ST (ST vs TM: V̇o2peak: -9% vs 24%, P<.01; 6MWD: 1% vs 15%, P=.05; insulin: -1% vs -31%, P=.05; HOMA-IR: -3% vs -29%, P=.06). Plasma concentrations of nitrotyrosine, protein carbonyls, and oxidized low-density lipoprotein (oxLDL) tended to decrease from pre-intervention concentrations in response to TM compared to ST (ST vs TM: nitrotyrosine: 2% vs -28%, P=.01; protein carbonyls: -4% vs -34%, P=.08; oxLDL: -3% vs -32%, P<.01). Changes in circulating concentrations of C-reactive protein, protein carbonyls, and oxLDL were negatively associated with changes in V̇o2peak and 6MWD (r's=-0.40 to -0.76) and positively associated with fasting plasma insulin and HOMA-IR (r's=0.52-0.81, Ps<.01). CONCLUSIONS: Six months of TM tends to be associated with increased functional capacity and reduced oxidative stress in chronic stroke survivors. Our findings identify potentially modifiable systemic markers of inflammation and oxidative stress important to stroke rehabilitation and provide potential targets for novel therapeutics in future studies.


Assuntos
Insulinas , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Biomarcadores , Terapia por Exercício , Estresse Oxidativo , Distribuição Aleatória , Caminhada/fisiologia , Pessoa de Meia-Idade
7.
J Funct Morphol Kinesiol ; 7(2)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736016

RESUMO

This pilot examines whether resistance training (RT) can induce changes in kynurenine (KYN) metabolism, which may contribute to improved physical function in breast cancer survivors (BCSs). Thirty-six BCSs (63.2 ± 1.1 years) underwent assessments of physical function and visual analog scale (100 cm) fatigue and quality of life before and after 12 weeks of RT (N = 22) or non-exercise control (CBCT©: Cognitively Based Compassion Training, N = 10). Blood was collected before and after interventions for assessment of KYN, kynurenic acid (KYNA), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α). At baseline, the women were moderately fatigued (mean score: 46 cm) and at risk of poor functional mobility. A group*time interaction was observed for all measures of strength with improvements (~25−35%) following RT (p's < 0.01), but not CBCT. Time effects were observed for fatigue (−36%) and quality of life (5%) (p's < 0.01), where both groups improved in a similar manner. A group*time interaction was observed for KYN (p = 0.02) and PGC-1α (p < 0.05), with KYN decreasing and PGC-1α increasing following RT and the opposite following CBCT. These changes resulted in KYN/KYNA decreasing 34% post-RT, but increasing 21% following CBCT. These data support RT as a therapeutic intervention to counteract the long-term side effect of fatigue and physical dysfunction in BCSs. Additionally, the results suggest that this effect may be mediated through the activation of PGC-1α leading to alterations in KYN metabolism.

8.
World J Psychiatry ; 12(1): 77-97, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35111580

RESUMO

Major depressive disorder is a debilitating disorder affecting millions of people each year. Brain-derived neurotrophic factor (BDNF) and inflammation are two prominent biologic risk factors in the pathogenesis of depression that have received considerable attention. Many clinical and animal studies have highlighted associations between low levels of BDNF or high levels of inflammatory markers and the development of behavioral symptoms of depression. However, less is known about potential interaction between BDNF and inflammation, particularly within the central nervous system. Emerging evidence suggests that there is bidirectional regulation between these factors with important implications for the development of depressive symptoms and anti-depressant response. Elevated levels of inflammatory mediators have been shown to reduce expression of BDNF, and BDNF may play an important negative regulatory role on inflammation within the brain. Understanding this interaction more fully within the context of neuropsychiatric disease is important for both developing a fuller understanding of biological pathogenesis of depression and for identifying novel therapeutic opportunities. Here we review these two prominent risk factors for depression with a particular focus on pathogenic implications of their interaction.

9.
Community Ment Health J ; 58(4): 806-811, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34537929

RESUMO

This article describes the rate of suicidal ideation (SI) across three timepoints among treatment-seeking patients recently discharged from psychiatric hospitalization-a group that is at ultrahigh-risk for suicide. Retrospective chart review was used to quantify the rate of SI in 252 consecutive patients discharged to a post-hospital mental health clinic. Data include patients' lifetime history of SI, SI at the time of hospital intake, and SI at post-hospital outpatient clinic intake, as well as demographics and diagnosis. Overall, 67% of the sample reported a lifetime history of SI, 49% reported SI during hospital intake, and 6% reported SI at post-hospital clinic intake. Age was the only variable associated with history of SI (p = .04), with younger patients more likely (OR = 1.85) to report a history of SI. These results may help inform the development of interventions for the population of ultrahigh-risk patients being discharged from hospital after psychiatric care.


Assuntos
Ideação Suicida , Suicídio , Humanos , Alta do Paciente , Estudos Retrospectivos , Tentativa de Suicídio/psicologia
10.
Psychoneuroendocrinology ; 134: 105404, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34601342

RESUMO

Brain-derived neurotrophic factor (BDNF) is implicated in the pathology of major depression and influences the inflammatory response. Prolonged immune system activation can cause depression symptoms, and individuals with low BDNF expression may be vulnerable to inflammation-induced depression. We tested the hypothesis that BDNF deficient mice are vulnerable to the induction of depressive-like behavior following peripheral immune challenge. BDNF heterozygous (BDNF+/-) or wild-type (BDNF+/+) littermate mice were injected intraperitoneally (i.p.) with endotoxin (lipopolysaccharide, LPS) to trigger an acute pro-inflammatory response. After resolution of the acute sickness response, central expression of inflammatory genes, kynurenine metabolites, and depressive-like behaviors across multiple dimensions (symptoms) were measured. BDNF+/- mice displayed an exaggerated neuroinflammatory response following peripheral immune challenge. Pro-inflammatory cytokines interleukin-1ß (IL-1ß), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) were overexpressed in BDNF+/- mice relative to BDNF+/+ littermate control mice. While behavioral despair and anxiety-like behavior was not different between genotypes, LPS-induced anhedonia-like behavior was significantly more pronounced in BDNF+/- mice relative to BDNF+/+ mice. The kynurenine pathway mediates the many depressive-like behavioral effects of peripheral LPS, and similar to pro-inflammatory cytokine gene expression, indoleamine 2,3-dioxygenase (IDO) expression and kynurenine metabolism was exaggerated in BDNF+/- mice. Genetic BDNF deficiency results in a dysregulated neuroinflammatory and metabolic response to peripheral immune challenge and in a specific vulnerability to the development of inflammation-induced anhedonia.

11.
Front Psychiatry ; 12: 705554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421684

RESUMO

Understanding the mechanism(s) by which maternal immune activation (MIA) during gestation may disrupt neurodevelopment and increase the susceptibility for disorders such as autism spectrum disorder (ASD) or schizophrenia is a critical step in the development of better treatments and preventive measures. A large body of literature has investigated the pathophysiology of MIA in rodents. However, a translatability gap plagues pre-clinical research of complex behavioral/developmental diseases and those diseases requiring clinical diagnosis, such as ASD. While ideal for their genetic flexibility, vast reagent toolkit, and practicality, rodent models often lack important elements of ethological validity. Hence, our study aimed to develop and characterize the prenatal MIA model in marmosets. Here, we adapted the well-characterized murine maternal immune activation model. Pregnant dams were administered 5 mg/kg poly-L-lysine stabilized polyinosinic-polycytidylic acid (Poly ICLC) subcutaneously three times during gestation (gestational day 63, 65, and 67). Dams were allowed to deliver naturally with no further experimental treatments. After parturition, offspring were screened for general health and vigor, and individual assessment of communication development and social behavior was measured during neonatal or adolescent periods. Similar to rodent models, offspring subjected to MIA exhibited a disruption in patterns of communication during early development. Assessment of social behavior in a marmoset-modified 3-chamber test at 3 and 9 months of age revealed alterations in social behavior that, in some instances, was sex-dependent. Together, our data indicate that marmosets are an excellent non-human primate model for investigating the neurodevelopmental and behavioral consequences of exposure to prenatal challenges, like MIA. Additional studies are necessary to more completely characterize the effect of prenatal inflammation on marmoset development and explore therapeutic intervention strategies that may be applicable in a clinical setting.

12.
Cells ; 10(6)2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205235

RESUMO

Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.


Assuntos
Cinurenina/metabolismo , Transtornos Mentais , Doenças Neurodegenerativas , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Transtornos Mentais/terapia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
13.
Artigo em Inglês | MEDLINE | ID: mdl-35662811

RESUMO

Chronic stress is a well-known risk factor in major depressive disorder and disrupts the kynurenine and serotonin pathways of tryptophan metabolism. Here, we characterize the temporal central and peripheral changes in tryptophan metabolism and concomitant depressive-like behavioural phenotype induced during the progression of chronic unpredictable stress (CUS). Mice were exposed to 0, 10, 20, or 30 days of CUS followed by a panel of behavioural assays to determine depressive-like phenotypes. Immediately after behavioural testing, plasma and brain tissue were collected for metabolic analysis. While anhedonia-like and anxiety-like behaviours were unaffected by stress, nesting behaviour and cognitive deficits became apparent in response to CUS exposure. While CUS caused a transient reduction in circulating quinolinic acid, no other tryptophan metabolites significantly changed in response to CUS. In the brain, tryptophan, kynurenine, picolinic acid, and 5-hydroxyindoleacetic acid concentrations were significantly elevated in CUS-exposed mice compared with non-stress control animals, while kynurenic acid, xanthurenic acid, and serotonin decreased in CUS-exposed mice. Metabolic turnover of serotonin to the major metabolite 5- hydroxyindoleacetic acid was markedly increased in response to CUS. These results suggest that CUS impairs hippocampal-dependent working memory and enhances nascent nesting behaviour in C57BL/6J male mice, and these behaviours are associated with increased brain kynurenine pathway metabolism leading to accumulation of picolinic acid and a significant reduction in serotonin levels.

14.
Am J Nephrol ; 51(7): 565-571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32575099

RESUMO

BACKGROUND: Fatigue is one of the most debilitating symptoms reported by maintenance hemodialysis (MHD) patients. Hemodialysis causes marked depletion in plasma essential amino acids. We studied the cross-sectional relationship of pre- and post-hemodialysis branched-chain amino acids (BCAAs) concentrations with fatigue in MHD patients. METHODS: MHD patients self-reported fatigue during a dialysis session using the Brief Fatigue Inventory. Pre- and post-dialysis plasma levels of BCAAs (valine, leucine, and isoleucine) were measured using HPLC-mass spectrometry. RESULTS: The mean age of study participants (n = 114) was 54.8 ± 12.8 years. Plasma levels of BCAAs decreased significantly post-dialysis compared to pre-dialysis (303.8 ± 9.4 vs. 392.1 ± 9.4 µM/L, p < 0.0001). Fatigue score increased as a function of age (p = 0.015). There was no association between pre-dialysis plasma levels of BCAAs and fatigue. A significant negative correlation was found between post-dialysis plasma levels of BCAAs and fatigue (p < 0.05). CONCLUSIONS: These preliminary findings suggest that disruption in BCAAs homeostasis may play a role in precipitating fatigue.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Fadiga/epidemiologia , Falência Renal Crônica/terapia , Diálise Renal/efeitos adversos , Adulto , Idoso , Aminoácidos de Cadeia Ramificada/metabolismo , Estudos de Coortes , Estudos Transversais , Fadiga/sangue , Fadiga/diagnóstico , Fadiga/etiologia , Feminino , Humanos , Falência Renal Crônica/sangue , Masculino , Pessoa de Meia-Idade , Autorrelato/estatística & dados numéricos
15.
Mol Ther Methods Clin Dev ; 17: 83-98, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31890743

RESUMO

Glial cell-line-derived neurotrophic factor (GDNF) is a potent neuroprotective agent in cellular and animal models of Parkinson's disease (PD). However, CNS delivery of GDNF in clinical trials has proven challenging due to blood-brain barrier (BBB) impermeability, poor diffusion within brain tissue, and large brain size. We report that using non-toxic mobilization-enabled preconditioning, hematopoietic stem cell (HSC) transplantation-based macrophage-mediated gene delivery may provide a solution to overcome these obstacles. Syngeneic bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into 14-week-old MitoPark mice exhibiting PD-like impairments. Transplant preconditioning with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was used to vacate bone marrow stem cell niches. Chimerism reached ∼80% after seven transplantation cycles. Transgene-expressing macrophages infiltrated degenerating CNS regions of MitoPark mice (not wild-type littermate controls), resulting in increased GDNF levels in the midbrain. Macrophage GDNF delivery not only markedly improved motor and non-motor dysfunction, but also dramatically mitigated the loss of dopaminergic neurons in both substantia nigra and the ventral tegmental area and preserved axonal terminals in the striatum. Striatal dopamine levels were almost completely restored. Our data support further development of mobilization-enabled HSC transplantation (HSCT)-based macrophage-mediated GDNF gene delivery as a disease-modifying therapy for PD.

16.
J Neurosci ; 39(15): 2792-2809, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30728170

RESUMO

17ß-estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but its precise functions in the brain are unclear. Here, we used a forebrain-neuron-specific aromatase knock-out (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain of mice and thereby elucidate its functions. FBN-ARO-KO mice showed a 70-80% decrease in aromatase and forebrain E2 levels compared with FLOX controls. Male and female FBN-ARO-KO mice exhibited significant deficits in forebrain spine and synaptic density, as well as hippocampal-dependent spatial reference memory, recognition memory, and contextual fear memory, but had normal locomotor function and anxiety levels. Reinstating forebrain E2 levels via exogenous in vivo E2 administration was able to rescue both the molecular and behavioral defects in FBN-ARO-KO mice. Furthermore, in vitro studies using FBN-ARO-KO hippocampal slices revealed that, whereas induction of long-term potentiation (LTP) was normal, the amplitude was significantly decreased. Intriguingly, the LTP defect could be fully rescued by acute E2 treatment in vitro Mechanistic studies revealed that FBN-ARO-KO mice had compromised rapid kinase (AKT, ERK) and CREB-BDNF signaling in the hippocampus and cerebral cortex. In addition, acute E2 rescue of LTP in hippocampal FBN-ARO-KO slices could be blocked by administration of a MEK/ERK inhibitor, further suggesting a key role for rapid ERK signaling in neuronal E2 effects. In conclusion, the findings provide evidence of a critical role for neuron-derived E2 in regulating synaptic plasticity and cognitive function in the male and female brain.SIGNIFICANCE STATEMENT The steroid hormone 17ß-estradiol (E2) is well known to be produced in the ovaries in females. Intriguingly, forebrain neurons also express aromatase, the E2 biosynthetic enzyme, but the precise functions of neuron-derived E2 is unclear. Using a novel forebrain-neuron-specific aromatase knock-out mouse model to deplete neuron-derived E2, the current study provides direct genetic evidence of a critical role for neuron-derived E2 in the regulation of rapid AKT-ERK and CREB-BDNF signaling in the mouse forebrain and demonstrates that neuron-derived E2 is essential for normal expression of LTP, synaptic plasticity, and cognitive function in both the male and female brain. These findings suggest that neuron-derived E2 functions as a novel neuromodulator in the forebrain to control synaptic plasticity and cognitive function.


Assuntos
Estradiol/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Ansiedade/genética , Ansiedade/psicologia , Aromatase/genética , Cognição , Espinhas Dendríticas , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Hipocampo , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prosencéfalo/enzimologia , Prosencéfalo/metabolismo , Desempenho Psicomotor/fisiologia , Aprendizagem Espacial
18.
Psychoneuroendocrinology ; 97: 47-58, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30005281

RESUMO

BACKGROUND: Peripheral immune challenge can elicit microglia activation and depression-related symptoms. The balance of inflammatory signals in the tryptophan pathway can skew the activity of indoleamine-pyrrole 2,3 dioxygenase (IDO1) towards the metabolization of tryptophan into kynurenine (rather than serotonin), and towards neuroprotective or neurotoxic metabolites. The proteome changes that accompany inflammation-associated depression-related behaviors are incompletely understood. METHODS: The changes in microglia protein abundance and post-translational modifications in wild type (WT) mice that exhibit depression-like symptoms after recovery from peripheral Bacille Calmette-Guerin (BCG) challenge were studied. This WT_BGG group was compared to mice that do not express depression-like symptoms after BCG challenge due to IDO1 deficiency by means of genetic knockout (BCG_KO group), and to WT Saline-treated (Sal) mice (WT_Sal group) using a mass spectrometry-based label-free approach. RESULTS: The comparison of WT_BCG relative to WT_Sal and KO_BCG mice uncovered patterns of protein abundance and acetylation among the histone families that could influence microglia signaling and transcriptional rates. Members of the histone clusters 1, 2 and 3 families were less abundant in WT_BCG relative to WT_Sal whereas members in the H2A family exhibited the opposite pattern. Irrespective of family, the majority of the histones were less abundant in WT_BCG relative to KO_BCG microglia. Homeostatic mechanisms may temper the potentially toxic effects of high histone levels after BCG challenge to levels lower than Sal. Histone acetylation was highest in WT_BCG and the similar levels observed in WT_Sal and KO_BCG. This result suggest that histone acetylation levels are similar between IDO1 deficient mice after immune challenge and unchallenged WT mice. The over-abundance of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation proteins (14-3-3 series) in WT_BCG relative to KO_BCG is particularly interesting because these proteins activate another rate-limiting enzyme in the tryptophan pathway. The over-representation of alcoholism and systemic lupus erythematosus pathways among the proteins exhibiting differential abundance between the groups suggest that these disorders share microglia activation pathways with BCG challenge. The over-representation of phagosome pathway among proteins differentially abundant between WT_BCG and KO_BCG microglia suggest an association between IDO1 deficiency and phagocytosis. Likewise, the over-representation of the gap junction pathway among the differentially abundant proteins between KO_BCG and WT_Sal suggest a multifactorial effect of BCG and IDO1 deficiency on cell communication. CONCLUSIONS: The present study of histone acetylation and differential protein abundance furthers the understanding of the long lasting effects of peripheral immune challenges. Our findings offer insights into target proteins and mechanisms that provide clues for therapies to ameliorate inflammation-associated depression-related behaviors.


Assuntos
Depressão/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Acetilação , Animais , Modelos Animais de Doenças , Histonas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Cinurenina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , Serotonina/metabolismo , Triptofano/metabolismo
19.
Neuropsychopharmacology ; 43(13): 2586-2596, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30026598

RESUMO

Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1ß release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ-55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1ß release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED50 of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1ß release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation in mice, assessed at day 2 after a single systemic LPS injection (0.8 mg/kg, i.p.), suggesting a role for P2X7 in microglial activation. In a model of BCG-induced depression, JNJ-55308942 dosed orally (30 mg/kg), reversed the BCG-induced deficits of sucrose preference and social interaction, indicating for the first time a role of P2X7 in the BCG model of depression, probably due to the neuroinflammatory component induced by BCG inoculation. Finally, in a rat model of chronic stress induced sucrose intake deficit, JNJ-55308942 reversed the deficit with concurrent high P2X7 brain occupancy as measured by autoradiography. This body of data demonstrates that JNJ-55308942 is a potent P2X7 antagonist, engages the target in brain, modulates IL-1ß release and microglial activation leading to efficacy in two models of anhedonia in rodents.


Assuntos
Anedonia/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Mediadores da Inflamação/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores Purinérgicos P2X7/fisiologia , Anedonia/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Piridinas/química , Piridinas/uso terapêutico , Pirimidinas/química , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ratos Wistar
20.
Psychoneuroendocrinology ; 94: 1-10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29734055

RESUMO

Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1ß, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO-/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity.


Assuntos
Quinurenina 3-Mono-Oxigenase/metabolismo , Cinurenina/metabolismo , Microglia/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Homeostase/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Oxigenases de Função Mista/metabolismo , Neuroimunomodulação/imunologia , Neuroimunomodulação/fisiologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ácido Quinolínico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA