Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659838

RESUMO

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-like G0 state, and it incorporates a tunable parameter to filter out less certain classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-art methods even while classifying more cell cycle states, including G0. We showcased the versatility of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various normalization methods and gene identifiers. We provide methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover underlying biological signals. The classifier can be used either as an R package integrated with Seurat (https://github.com/plaisier-lab/ccafv2_R) or a PyPI package integrated with scanpy (https://pypi.org/project/ccAFv2/). We proved that ccAFv2 has enhanced accuracy, flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular heterogeneity, and deciphering the molecular mechanisms by which proliferation and quiescence affect cellular processes.

2.
Cell Rep Methods ; 3(4): 100442, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159661

RESUMO

Somatic mutations occur as random genetic changes in genes through protein-affecting mutations (PAMs), gene fusions, or copy number alterations (CNAs). Mutations of different types can have a similar phenotypic effect (i.e., allelic heterogeneity) and should be integrated into a unified gene mutation profile. We developed OncoMerge to fill this niche of integrating somatic mutations to capture allelic heterogeneity, assign a function to mutations, and overcome known obstacles in cancer genetics. Application of OncoMerge to TCGA Pan-Cancer Atlas increased detection of somatically mutated genes and improved the prediction of the somatic mutation role as either activating or loss of function. Using integrated somatic mutation matrices increased the power to infer gene regulatory networks and uncovered the enrichment of switch-like feedback motifs and delay-inducing feedforward loops. These studies demonstrate that OncoMerge efficiently integrates PAMs, fusions, and CNAs and strengthens downstream analyses linking somatic mutations to cancer phenotypes.


Assuntos
Variações do Número de Cópias de DNA , Fusão Gênica , Variações do Número de Cópias de DNA/genética , Mutação , Redes Reguladoras de Genes , Fenótipo
3.
Front Cell Dev Biol ; 11: 1084068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051469

RESUMO

Background: The expression of proinflammatory signals at the site of muscle injury are essential for efficient tissue repair and their dysregulation can lead to inflammatory myopathies. Macrophages, neutrophils, and fibroadipogenic progenitor cells residing in the muscle are significant sources of proinflammatory cytokines and chemokines. However, the inducibility of the myogenic satellite cell population and their contribution to proinflammatory signaling is less understood. Methods: Mouse satellite cells were isolated and exposed to lipopolysaccharide (LPS) to mimic sterile skeletal muscle injury and changes in the expression of proinflammatory genes was examined by RT-qPCR and single cell RNA sequencing. Expression patterns were validated in skeletal muscle injured with cardiotoxin by RT-qPCR and immunofluorescence. Results: Satellite cells in culture were able to express Tnfa, Ccl2, and Il6, within 2 h of treatment with LPS. Single cell RNA-Seq revealed seven cell clusters representing the continuum from activation to differentiation. LPS treatment led to a heterogeneous pattern of induction of C-C and C-X-C chemokines (e.g., Ccl2, Ccl5, and Cxcl0) and cytokines (e.g., Tgfb1, Bmp2, Il18, and Il33) associated with innate immune cell recruitment and satellite cell proliferation. One cell cluster was enriched for expression of the antiviral interferon pathway genes under control conditions and LPS treatment. Activation of this pathway in satellite cells was also detectable at the site of cardiotoxin induced muscle injury. Conclusion: These data demonstrate that satellite cells respond to inflammatory signals and secrete chemokines and cytokines. Further, we identified a previously unrecognized subset of satellite cells that may act as sensors for muscle infection or injury using the antiviral interferon pathway.

4.
Nat Commun ; 14(1): 95, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609402

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with poorly understood clinical heterogeneity, underscored by significant differences in patient age at onset, symptom progression, therapeutic response, disease duration, and comorbidity presentation. We perform a patient stratification analysis to better understand the variability in ALS pathology, utilizing postmortem frontal and motor cortex transcriptomes derived from 208 patients. Building on the emerging role of transposable element (TE) expression in ALS, we consider locus-specific TEs as distinct molecular features during stratification. Here, we identify three unique molecular subtypes in this ALS cohort, with significant differences in patient survival. These results suggest independent disease mechanisms drive some of the clinical heterogeneity in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/patologia , Doenças Neurodegenerativas/patologia , Comorbidade , Córtex Motor/patologia , Variação Biológica da População
5.
Adv Sci (Weinh) ; 9(21): e2201436, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35619544

RESUMO

The perivascular niche (PVN) is a glioblastoma tumor microenvironment (TME) that serves as a safe haven for glioma stem cells (GSCs), and acts as a reservoir that inevitably leads to tumor recurrence. Understanding cellular interactions in the PVN that drive GSC treatment resistance and stemness is crucial to develop lasting therapies for glioblastoma. The limitations of in vivo models and in vitro assays have led to critical knowledge gaps regarding the influence of various cell types in the PVN on GSCs behavior. This study developed an organotypic triculture microfluidic model as a means to recapitulate the PVN and study its impact on GSCs. This triculture platform, comprised of endothelial cells (ECs), astrocytes, and GSCs, is used to investigate GSC invasion, proliferation and stemness. Both ECs and astrocytes significantly increased invasiveness of GSCs. This study futher identified 15 ligand-receptor pairs using single-cell RNAseq with putative chemotactic mechanisms of GSCs, where the receptor is up-regulated in GSCs and the diffusible ligand is expressed in either astrocytes or ECs. Notably, the ligand-receptor pair SAA1-FPR1 is demonstrated to be involved in chemotactic invasion of GSCs toward PVN. The novel triculture platform presented herein can be used for therapeutic development and discovery of molecular mechanisms driving GSC biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/irrigação sanguínea , Glioma/metabolismo , Glioma/patologia , Humanos , Ligantes , Microfluídica , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
6.
Mol Syst Biol ; 17(6): e9522, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34101353

RESUMO

Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.


Assuntos
Glioblastoma , Células-Tronco Neurais , Animais , Ciclo Celular/genética , Divisão Celular , Humanos , Neurogênese/genética
7.
Front Microbiol ; 11: 589666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281785

RESUMO

The circularized bacteriocin enterocin AS-48 produced by Enterococcus sp. exhibits antibacterial activity through membrane disruption. The membrane-penetrating activity of enterocin AS-48 has been attributed to a specific alpha-helical region on the circular peptide. Truncated, linearized forms containing these domains have been shown to preserve limited bactericidal activity. We utilized the amino acid sequence of the active helical domain of enterocin AS-48 to perform a homology-based search of similar sequences in other bacterial genomes. We identified similar domains in three previously uncharacterized AS-48-like bacteriocin genes in Clostridium sordellii, Paenibacillus larvae, and Bacillus xiamenensis. Enterocin AS-48 and homologs from these bacterial species were used as scaffolds for the design of a minimal peptide library based on the active helical domain of each bacteriocin sequence. 95 synthetic peptide variants of each scaffold peptide, designated Syn-enterocin, Syn-sordellicin, Syn-larvacin, and Syn-xiamensin, were designed and synthesized from each scaffold sequence based on defined biophysical parameters. A total of 384 total peptides were assessed for antibacterial activity against Gram-negative and Gram-positive bacteria. Minimal Inhibitory Concentrations (MICs) as low as 15.6 nM could be observed for the most potent peptide candidate tested, with no significant cytotoxicity to eukaryotic cells. Our work demonstrates for the first time a general workflow of using minimal domains of natural bacteriocin sequences as scaffolds to design and rapidly synthesize a library of bacteriocin-based antimicrobial peptide variants for evaluation.

8.
J Microbiol Methods ; 109: 31-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448021

RESUMO

Research in understanding biofilm formation is dependent on accurate and representative measurements of the steric forces related to brush on bacterial surfaces. A MATLAB program to analyze force curves from an AFM efficiently, accurately, and with minimal user bias has been developed. The analysis is based on a modified version of the Alexander and de Gennes (AdG) polymer model, which is a function of equilibrium polymer brush length, probe radius, temperature, separation distance, and a density variable. Automating the analysis reduces the amount of time required to process 100 force curves from several days to less than 2min. The use of this program to crop and fit force curves to the AdG model will allow researchers to ensure proper processing of large amounts of experimental data and reduce the time required for analysis and comparison of data, thereby enabling higher quality results in a shorter period of time.


Assuntos
Bactérias/química , Fenômenos Químicos , Microscopia de Força Atômica/métodos , Polímeros/análise , Automação Laboratorial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA