Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nat Commun ; 15(1): 8621, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39366995

RESUMO

The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven ß subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets ß2 and ß5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.


Assuntos
Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Proteínas Recombinantes , Trichomonas vaginalis , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Humanos , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Modelos Moleculares
2.
PLoS One ; 19(10): e0308672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39352907

RESUMO

Trichomonas vaginalis is the causative agent of the common sexually transmitted disease, trichomoniasis, which affects more than a hundred million people worldwide. Metronidazole and tinidazole, agents belonging to the 5-nitroheterocyclic class of antimicrobials, are most often used to treat infection, but increased resistance has been reported and adverse effects of these drugs can be significant. Consequently, an urgent need exists for the development of novel drug entities against trichomoniasis. Critical for antimicrobial drug development is the demonstration of in vivo efficacy. Murine models of vaginal T. vaginalis infection are unreliable for unknown reasons. Meanwhile, murine infections with the related bovine pathogen, Tritrichomonas foetus, tend to be more robust, although susceptibility to different antimicrobials might differ from T. vaginalis. Here, we explored the utility of T. foetus infection as a surrogate model for drug development against T. vaginalis. Four different T. foetus strains caused robust vaginal infection in young mice, while none of four diverse T. vaginalis strains did. Comparison of drug susceptibility profiles revealed that T. foetus and T. vaginalis were similarly susceptible to a range of 5-nitroheterocyclic and gold(I) compounds. By comparison, proteasome inhibitors were 10- to 15-fold less active against T. foetus than T. vaginalis, although one of the proteasome inhibitors, bortezomib, had low micromolar activity or better against multiple strains of both trichomonads. Different strains of T. foetus were used to demonstrate the utility of the murine vaginal infection models for in vivo efficacy testing, including for bortezomib and a gold(I) compound. The differences in susceptibility to proteasome inhibitors may be partially explained by differences in the proteasome subunit sequences between the two trichomonads, although the functional relevance of the proteasome was similar in both organisms. These findings indicate that T. foetus can serve as a reliable surrogate model for T. vaginalis in vitro and in murine infections in vivo, but caution must be exercised for specific drug classes with targets, such as the proteasome, that may display genetic divergence between the trichomonads.


Assuntos
Modelos Animais de Doenças , Trichomonas vaginalis , Tritrichomonas foetus , Animais , Tritrichomonas foetus/efeitos dos fármacos , Feminino , Trichomonas vaginalis/efeitos dos fármacos , Camundongos , Desenvolvimento de Medicamentos , Metronidazol/farmacologia , Tricomoníase/tratamento farmacológico , Tricomoníase/parasitologia , Vaginite por Trichomonas/tratamento farmacológico , Vaginite por Trichomonas/parasitologia , Vagina/parasitologia , Vagina/efeitos dos fármacos
3.
ACS Omega ; 9(32): 34829-34840, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157084

RESUMO

The 20S proteasome is a multimeric protease complex that is essential for proteostasis in the cell. Small molecule proteasome inhibitors are approved drugs for various cancers and are advancing clinically as antiparasitics. Although tools and technologies to study the 20S proteasome have advanced, only one probe is commercially available to image proteasome activity. This probe consists of a fluorescently labeled, peptidyl vinyl sulfone that binds to one or more of the catalytic proteasome subunits. Here, we synthesized two, active site-directed epoxyketone probes, LJL-1 and LJL-2, that were based on the peptidyl backbones of the anticancer drugs, carfilzomib and bortezomib, respectively. Each probe was conjugated, via click chemistry, to a bifunctional group comprising 5-carboxytetramethylrhodamine (TAMRA) and biotin to, respectively, visualize and enrich the 20S proteasome from protein extracts of two eukaryotic pathogens, Leishmania donovani and Trichomonas vaginalis. Depending on species, each probe generated a different subunit-binding profile by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and the biotin tag enabled the enrichment of the bound subunits which were then formally identified by proteomics. Species differences in the order of electrophoretic migration by the ß subunits were also noted. Finally, both probes reacted specifically with the 20S subunits in contrast to the commercial vinyl sulfone probe that cross reacted with cysteine proteases. LJL-1 and LJL-2 should find general utility in the identification and characterization of pathogen proteasomes, and serve as reagents to evaluate the specificity and mechanism of binding of new antiparasitic proteasome inhibitors.

4.
Protein Sci ; 33(8): e5110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39073183

RESUMO

Inhibition of the proteolytic processing of hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) is an attractive approach for the drug discovery of novel anticancer therapeutics which prevent tumor progression and metastasis. Here, we utilized an improved and expanded version of positional scanning of substrate combinatorial libraries (PS-SCL) technique called HyCoSuL to optimize peptidomimetic inhibitors of the HGF/MSP activating serine proteases, HGFA, matriptase, and hepsin. These inhibitors have an electrophilic ketone serine trapping warhead and thus form a reversible covalent bond to the protease. We demonstrate that by varying the P2, P3, and P4 positions of the inhibitor with unnatural amino acids based on the protease substrate preferences learned from HyCoSuL, we can predictably modify the potency and selectivity of the inhibitor. We identified the tetrapeptide JH-1144 (8) as a single digit nM inhibitor of HGFA, matriptase and hepsin with excellent selectivity over Factor Xa and thrombin. These unnatural peptides have increased metabolic stability relative to natural peptides of similar structure. The tripeptide inhibitor PK-1-89 (2) has excellent pharmacokinetics in mice with good compound exposure out to 24 h. In addition, we obtained an X-ray structure of the inhibitor MM1132 (15) bound to matriptase revealing an interesting binding conformation useful for future inhibitor design.


Assuntos
Serina Endopeptidases , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Humanos , Desenho de Fármacos , Aminoácidos/química , Aminoácidos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Animais , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/química , Fator de Crescimento de Hepatócito/antagonistas & inibidores
5.
Nat Commun ; 15(1): 5230, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898025

RESUMO

Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Descoberta de Drogas/métodos , Metabolômica/métodos , Microbiota , Metagenômica/métodos , Espectroscopia de Ressonância Magnética , Bibliotecas de Moléculas Pequenas/química
6.
Front Bioeng Biotechnol ; 12: 1363186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544982

RESUMO

Hydrolytic enzymes play crucial roles in cellular processes, and dysregulation of their activities is implicated in various physiological and pathological conditions. These enzymes cleave substrates such as peptide bonds, phosphodiester bonds, glycosidic bonds, and other esters. Detecting aberrant hydrolase activity is vital for understanding disease mechanisms and developing targeted therapeutic interventions. This study introduces a novel approach to measuring hydrolase activity using giant magnetoresistive (GMR) spin valve sensors. These sensors change resistance in response to magnetic fields, and here, they are functionalized with specific substrates for hydrolases conjugated to magnetic nanoparticles (MNPs). When a hydrolase cleaves its substrate, the tethered magnetic nanoparticle detaches, causing a measurable shift in the sensor's resistance. This design translates hydrolase activity into a real-time, activity-dependent signal. The assay is simple, rapid, and requires no washing steps, making it ideal for point-of-care settings. Unlike fluorescent methods, it avoids issues like autofluorescence and photobleaching, broadening its applicability to diverse biofluids. Furthermore, the sensor array contains 80 individually addressable sensors, allowing for the simultaneous measurement of multiple hydrolases in a single reaction. The versatility of this method is demonstrated with substrates for nucleases, Bcu I and DNase I, and the peptidase, human neutrophil elastase. To demonstrate a clinical application, we show that neutrophil elastase in sputum from cystic fibrosis patients hydrolyze the peptide-GMR substrate, and the cleavage rate strongly correlates with a traditional fluorogenic substrate. This innovative assay addresses challenges associated with traditional enzyme measurement techniques, providing a promising tool for real-time quantification of hydrolase activities in diverse biological contexts.

7.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405969

RESUMO

Schistosomiasis, or bilharzia, is a neglected tropical disease caused by Schistosoma spp. blood flukes that infects over 200 million people worldwide. Just one partially effective drug is available, and new drugs and drug targets would be welcome. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania. We previously showed that anticancer proteasome inhibitors that act through the Schistosoma mansoni 20S proteasome (Sm20S) kill the parasite in vitro. To advance these initial findings, we employed Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) to define the substrate cleavage specificities of the three catalytic ß subunits of purified Sm20S. The profiles in turn were used to design and synthesize subunit-specific optimized substrates that performed two to eight fold better than the equivalent substrates used to measure the activity of the constitutive human proteasome (c20S). These specific substrates also eliminated the need to purify Sm20S from parasite extracts - a single step enrichment was sufficient to accurately measure substrate hydrolysis and its inhibition with proteasome inhibitors. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar, suggesting that data arising from an inhibitor development campaign that focuses on Sm20S can be extrapolated to the other two targets with consequent time and cost savings.

8.
ACS Omega ; 9(3): 3997-4003, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284081

RESUMO

Protecting groups (PGs) in peptide synthesis have inspired advanced design principles that incorporate "orthogonality" for selective C- and N-terminus and side-chain deprotections. The conventionally acid-stable 9-fluorenylmethoxycarbonyl (Fmoc) group is one of the most widely used N-protection groups in solid- and solution-phase synthesis. Despite the versatility of Fmoc, deprotection by the removal of the Fmoc group to unmask primary amines requires the use of a basic secondary amine nucleophile, but this stratagem poses challenges in sensitive molecules that bear reactive electrophilic groups. An expansion of PG versatility, a tunable orthogonality, in the late-stage synthesis of peptides would add flexibility to the synthetic design and implementation. Here, we report a novel Fmoc deprotection method using hydrogenolysis under mildly acidic conditions for the synthesis of Z-Arg-Lys-acyloxymethyl ketone (Z-R-K-AOMK). This new method is not only valuable for Fmoc deprotection in the synthesis of complex peptides that contain highly reactive electrophiles, or other similar sensitive functional groups, that are incompatible with traditional Fmoc deprotection conditions but also tolerant of N-Boc groups present in the substrate.

9.
Biochimie ; 216: 181-193, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37748748

RESUMO

Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity.


Assuntos
Alérgenos , Malassezia , Humanos , Alérgenos/metabolismo , Malassezia/genética , Malassezia/metabolismo , Leucócitos Mononucleares/metabolismo , Pele/metabolismo , Lipase/metabolismo
10.
Front Bioeng Biotechnol ; 11: 1256267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790251

RESUMO

Complications posed by preterm birth (delivery before 37 weeks of pregnancy) are a leading cause of newborn morbidity and mortality. The previous discovery and validation of an algorithm that includes maternal serum protein biomarkers, sex hormone-binding globulin (SHBG), and insulin-like growth factor-binding protein 4 (IBP4), with clinical factors to predict preterm birth represents an opportunity for the development of a widely accessible point-of-care assay to guide clinical management. Toward this end, we developed SHBG and IBP4 quantification assays for maternal serum using giant magnetoresistive (GMR) sensors and a self-normalizing dual-binding magnetic immunoassay. The assays have a picomolar limit of detections (LOD) with a relatively broad dynamic range that covers the physiological level of the analytes as they change throughout gestation. Measurement of serum from pregnant donors using the GMR assays was highly concordant with those obtained using a clinical mass spectrometry (MS)-based assay for the same protein markers. The MS assay requires capitally intense equipment and highly trained operators with a few days turnaround time, whereas the GMR assays can be performed in minutes on small, inexpensive instruments with minimal personnel training and microfluidic automation. The potential for high sensitivity, accuracy, and speed of the GMR assays, along with low equipment and personnel requirements, make them good candidates for developing point-of-care tests. Rapid turnaround risk assessment for preterm birth would enable patient testing and counseling at the same clinic visit, thereby increasing the timeliness of recommended interventions.

11.
Chem Commun (Camb) ; 59(83): 12459-12462, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782049

RESUMO

We report here a colorimetric method for rapid detection of norovirus based on the valence-driven peptide-AuNP interactions. We engineered a peptide sequence named K1 with a cleavage sequence in between two lysine residues. The positively charged lysine groups aggregated the negatively charged nanoparticles leading to a purple color change. There was a red color when the cleavage sequence was digested by the Southampton norovirus 3C-like protease (SV3CP)-a protease involved in the life cycle of Human norovirus (HNV). The limit of detection was determined to be 320 nM in Tris buffer. We further show that the sensor has good performance in exhaled breath condensate, urine, and faecal matter. This research provides a potential easy and quick way to selectively detect HNV.


Assuntos
Nanopartículas Metálicas , Norovirus , Humanos , Peptídeo Hidrolases , Colorimetria/métodos , Norovirus/química , Lisina , Peptídeos , Nanopartículas Metálicas/química , Ouro/química
12.
ACS Nano ; 17(17): 17308-17319, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602819

RESUMO

We report the reversible aggregation of silver nanoparticle (AgNP) assemblies using the combination of a cationic arginine-based peptide and sulfur-capped polyethylene glycol (PEG). The formation and dissociation of the aggregates were studied by optical methods and electron microscopy. The dissociation of silver clusters depends on the peptide sequence and PEG size. A molecular weight of 1 kDa for PEG was optimal for the dissociation. The most important feature of this dissociation method is that it can operate in complex biofluids such as plasma, saliva, bile, urine, cell media, or even seawater without a significant decrease in performance. Moreover, the peptide-particle assemblies are highly stable and do not degrade (or express of loss of signal upon dissociation) when dried and resolubilized, frozen and thawed, or left in daylight for a month. Importantly, the dissociation capacity of PEG can be reduced via the conjugation of a peptide-cleavable substrate. The dissociation capacity is restored in the presence of an enzyme. Based on these findings, we designed a PEG-peptide hybrid molecule specific to the Porphyromonas gingivalis protease RgpB. Our motivation was that this bacterium is a key pathogen in periodontitis, and RgpB activity has been correlated with chronic diseases including Alzheimer's disease. The RgpB limit of detection was 100 pM RgpB in vitro. This system was used to measure RgpB in gingival crevicular fluid (GCF) samples with a detection rate of 40% with 0% false negatives versus PCR for P. gingivalis (n = 37). The combination of PEG-peptide and nanoparticles dissociation method allows the development of convenient protease sensing that can operate independently of the media composition.


Assuntos
Nanopartículas Metálicas , Peptídeo Hidrolases , Porphyromonas gingivalis , Prata , Polímeros , Endopeptidases , Peptídeos , Polietilenoglicóis
13.
ACS Nano ; 17(17): 16980-16992, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579082

RESUMO

Better insights into the fate of membraneless organelles could strengthen the understanding of the transition from prebiotic components to multicellular organisms. Compartmentalized enzyme reactions in a synthetic coacervate have been investigated, yet there remains a gap in understanding the enzyme interactions with coacervate as a substrate hub. Here, we study how the molecularly crowded nature of the coacervate affects the interactions of the embedded substrate with a protease. We design oligopeptide-based coacervates that comprise an anionic Asp-peptide (D10) and a cationic Arg-peptide (R5R5) with a proteolytic cleavage site. The coacervates dissolve in the presence of the main protease (Mpro) implicated in the coronavirus lifecycle. We capitalize on the condensed structure, introduce a self-quenching mechanism, and model the enzyme kinetics by using Cy5.5-labeled peptides. The determined specificity constant (kcat/KM) is 5817 M-1 s-1 and is similar to that of the free substrate. We further show that the enzyme kinetics depend on the type and quantity of dye incorporated into the coacervates. Our work presents a simple design for enzyme-responsive coacervates and provides insights into the interactions between the enzyme and coacervates as a whole.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Oligopeptídeos , Peptídeo Hidrolases
14.
Analyst ; 148(18): 4504-4512, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578304

RESUMO

Noroviruses are highly contagious and are one of the leading causes of acute gastroenteritis worldwide. Due to a lack of effective antiviral therapies, there is a need to diagnose and surveil norovirus infections to implement quarantine protocols and prevent large outbreaks. Currently, the gold standard of diagnosis uses reverse transcription polymerase chain reaction (RT-PCR), but PCR can have limited availability. Here, we propose a combination of a tunable peptide substrate and gold nanoparticles (AuNPs) to colorimetrically detect the Southampton norovirus 3C-like protease (SV3CP), a key protease in viral replication. Careful design of the substrate employs a zwitterionic peptide with opposite charged moieties on the C- and N- termini to induce a rapid color change visible to the naked eye; thus, this color change is indicative of SV3CP activity. This work expands on existing zwitterionic peptide strategies for protease detection by systematically evaluating the effects of lysine and arginine on nanoparticle charge screening. We also determine a limit of detection for SV3CP of 28.0 nM with comparable results in external breath condensate, urine, and fecal matter for 100 nM of SV3CP. The key advantage of this system is its simplicity and accessibility, thus making it an attractive tool for qualitative point-of-care diagnostics.


Assuntos
Infecções por Caliciviridae , Nanopartículas Metálicas , Norovirus , Humanos , Peptídeo Hidrolases , Norovirus/genética , Ouro , Colorimetria , Peptídeos , Endopeptidases , Fezes , Infecções por Caliciviridae/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645851

RESUMO

Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven ß subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the ß1, ß2 and ß5 subunits, while CP-17 binds the ß2 and ß5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.

16.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398257

RESUMO

Microbial natural products remain an important resource for drug discovery. Yet, commonly employed discovery techniques are plagued by the rediscovery of known compounds, the relatively few microbes that can be cultured, and laboratory growth conditions that do not elicit biosynthetic gene expression among myriad other challenges. Here we introduce a culture independent approach to natural product discovery that we call the Small Molecule In situ Resin Capture (SMIRC) technique. SMIRC exploits in situ environmental conditions to elicit compound production and represents a new approach to access poorly explored chemical space by capturing natural products directly from the environments in which they are produced. In contrast to traditional methods, this compound-first approach can capture structurally complex small molecules across all domains of life in a single deployment while relying on Nature to provide the complex and poorly understood environmental cues needed to elicit biosynthetic gene expression. We illustrate the effectiveness of SMIRC in marine habitats with the discovery of numerous new compounds and demonstrate that sufficient compound yields can be obtained for NMR-based structure assignment. Two new compound classes are reported including one novel carbon skeleton that possesses a functional group not previously observed among natural products and a second that possesses potent biological activity. We introduce expanded deployments, in situ cultivation, and metagenomics as methods to facilitate compound discovery, enhance yields, and link compounds to producing organisms. This compound first approach can provide unprecedented access to new natural product chemotypes with broad implications for drug discovery.

17.
Front Microbiol ; 14: 1199085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405169

RESUMO

Deep-sea hydrothermal vents offer unique habitats for heat tolerant enzymes with potential new enzymatic properties. Here, we present the novel C11 protease globupain, which was prospected from a metagenome-assembled genome of uncultivated Archaeoglobales sampled from the Soria Moria hydrothermal vent system located on the Arctic Mid-Ocean Ridge. Sequence comparisons against the MEROPS-MPRO database showed that globupain has the highest sequence identity to C11-like proteases present in human gut and intestinal bacteria. Successful recombinant expression in Escherichia coli of the wild-type zymogen and 13 mutant substitution variants allowed assessment of residues involved in maturation and activity of the enzyme. For activation, globupain required the addition of DTT and Ca2+. When activated, the 52kDa proenzyme was processed at K137 and K144 into a 12kDa light- and 32kDa heavy chain heterodimer. A structurally conserved H132/C185 catalytic dyad was responsible for the proteolytic activity, and the enzyme demonstrated the ability to activate in-trans. Globupain exhibited caseinolytic activity and showed a strong preference for arginine in the P1 position, with Boc-QAR-aminomethylcoumarin (AMC) as the best substrate out of a total of 17 fluorogenic AMC substrates tested. Globupain was thermostable (Tm activated enzyme = 94.51°C ± 0.09°C) with optimal activity at 75°C and pH 7.1. Characterization of globupain has expanded our knowledge of the catalytic properties and activation mechanisms of temperature tolerant marine C11 proteases. The unique combination of features such as elevated thermostability, activity at relatively low pH values, and ability to operate under high reducing conditions makes globupain a potential intriguing candidate for use in diverse industrial and biotechnology sectors.

18.
Biochemistry ; 62(15): 2289-2300, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459182

RESUMO

The biological and pathological functions of cathepsin B occur in acidic lysosomes and at the neutral pH of cytosol, nuclei, and extracellular locations. Importantly, cathepsin B displays different substrate cleavage properties at acidic pH compared to neutral pH conditions. It is, therefore, desirable to develop specific substrates for cathepsin B that measure its activity over broad pH ranges. Current substrates used to monitor cathepsin B activity consist of Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, but they lack specificity since they are cleaved by other cysteine cathepsins. Furthermore, Z-Arg-Arg-AMC monitors cathepsin B activity at neutral pH and displays minimal activity at acidic pH. Therefore, the purpose of this study was to design and validate specific fluorogenic peptide substrates that can monitor cathepsin B activity over a broad pH range from acidic to neutral pH conditions. In-depth cleavage properties of cathepsin B were compared to those of the cysteine cathepsins K, L, S, V, and X via multiplex substrate profiling by mass spectrometry at pH 4.6 and pH 7.2. Analysis of the cleavage preferences predicted the tripeptide Z-Nle-Lys-Arg-AMC as a preferred substrate for cathepsin B. Significantly, Z-Nle-Lys-Arg-AMC displayed the advantageous properties of measuring high cathepsin B specific activity over acidic to neutral pHs and was specifically cleaved by cathepsin B over the other cysteine cathepsins. Z-Nle-Lys-Arg-AMC specifically monitored cathepsin B activity in neuronal and glial cells which were consistent with relative abundances of cathepsin B protein. These findings validate Z-Nle-Lys-Arg-AMC as a novel substrate that specifically monitors cathepsin B activity over a broad pH range.


Assuntos
Catepsina B , Catepsinas , Catepsina B/metabolismo , Catepsinas/metabolismo , Cisteína , Endopeptidases/metabolismo , Lisossomos/metabolismo , Peptídeos , Especificidade por Substrato
19.
Protein Sci ; 32(8): e4712, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354015

RESUMO

Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (MPro ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 and 20 µM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of MPro inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like MPro versus other targets where it has been more successful, and versus other structure-based techniques against MPro itself.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Antivirais/química
20.
Nat Chem Biol ; 19(12): 1469-1479, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37349583

RESUMO

Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.


Assuntos
Bacteroides thetaiotaomicron , Diabetes Mellitus Tipo 2 , Humanos , Dipeptidil Peptidase 4/genética , Serina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA