Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biol Psychiatry Glob Open Sci ; 4(1): 385-393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298776

RESUMO

Background: During childhood and adolescence, attention-deficit/hyperactivity disorder (ADHD) is associated with changes in symptoms and brain structures, but the link between brain structure and function remains unclear. The limbic system, often termed the "emotional network," plays an important role in a number of neurodevelopmental disorders, yet this brain network remains largely unexplored in ADHD. Investigating the developmental trajectories of key limbic system structures during childhood and adolescence will provide novel insights into the neurobiological underpinnings of ADHD. Methods: Structural magnetic resonance imaging data (380 scans), emotional regulation (Affective Reactivity Index), and ADHD symptom severity (Conners 3 ADHD Index) were measured at up to 3 time points between 9 and 14 years of age in a sample of children and adolescents with ADHD (n = 57) and control children (n = 109). Results: Compared with the control group, the ADHD group had lower volume of the amygdala (left: ß standardized [ß_std] = -0.38; right: ß_std = -0.34), hippocampus (left: ß_std = -0.44; right: ß_std = -0.34), cingulate gyrus (left: ß_std = -0.42; right: ß_std = -0.32), and orbitofrontal cortex (right: ß_std = -0.33) across development (9-14 years). There were no significant group-by-age interactions in any of the limbic system structures. Exploratory analysis found a significant Conners 3 ADHD Index-by-age interaction effect on the volume of the left mammillary body (ß_std = 0.17) in the ADHD group across the 3 study time points. Conclusions: Children and adolescents with ADHD displayed lower volume and atypical development in limbic system structures. Furthermore, atypical limbic system development was associated with increased symptom severity, highlighting a potential neurobiological correlate of ADHD severity.

2.
Transl Psychiatry ; 14(1): 44, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245522

RESUMO

Hippocampal volumetric reductions are observed across the psychosis spectrum, with interest in the localisation of these reductions within the hippocampal subfields increasing. Deficits of the CA1 subfield in particular have been implicated in the neuropathophysiology of psychotic disorders. Investigating the trajectory of these abnormalities in healthy adolescents reporting sub-threshold psychotic experiences (PE) can provide insight into the neural mechanisms underlying psychotic symptoms without the potentially confounding effects of a formal disorder, or antipsychotic medication. In this novel investigation, a sample of 211 young people aged 11-13 participated initially in the Adolescent Brain Development study. PE classification was determined by expert consensus at each timepoint. Participants underwent neuroimaging at 3 timepoints, over 6 years. 78 participants with at least one scan were included in the final sample; 33 who met criteria for a definite PE at least once across all the timepoints (PE group), and 45 controls. Data from bilateral subfields of interest (CA1, CA2/3, CA4/DG, presubiculum and subiculum) were extracted for Linear Mixed Effects analyses. Before correction, subfield volumes were found to increase in the control group and decrease in the PE group for the right CA2 and CA2/3 subfields, with moderate to large effect sizes (d = -0.61, and d = -0.79, respectively). Before correction, right subiculum and left presubiculum volumes were reduced in the PE group compared to controls, regardless of time, with moderate effect sizes (d = -0.52, and d = -0.59, respectively). However, none of these effects survived correction. Severity of symptoms were not associated with any of the noted subfields. These findings provide novel insight to the discussion of the role of hippocampal subfield abnormalities in the pathophysiology underlying psychotic experiences.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Adolescente , Humanos , Tamanho do Órgão , Hipocampo/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos
3.
Cerebellum ; 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351730

RESUMO

A berrant connectivity in the cerebellum has been found in psychotic conditions such as schizophrenia corresponding with cognitive and motor deficits found in these conditions. Diffusion differences in the superior cerebellar peduncles, the white matter connecting the cerebellar circuitry to the rest of the brain, have also been found in schizophrenia and high-risk states. However, white matter diffusivity in the peduncles in individuals with sub-threshold psychotic experiences (PEs) but not reaching the threshold for a definitive diagnosis remains unstudied. This study investigates the cerebellar peduncles in adolescents with PEs but no formal psychiatric diagnosis.Sixteen adolescents with PEs and 17 age-matched controls recruited from schools underwent High-Angular-Resolution-Diffusion neuroimaging. Following constrained spherical deconvolution whole-brain tractography, the superior, inferior and middle peduncles were isolated and virtually dissected out using ExploreDTI. Differences for macroscopic and microscopic tract metrics were calculated using one-way between-group analyses of covariance controlling for age, sex and estimated Total Intracranial Volume (eTIV). Multiple comparisons were corrected using Bonferroni correction.A decrease in fractional anisotropy was identified in the right (p = 0.045) and left (p = 0.058) superior cerebellar peduncle; however, this did not survive strict Bonferroni multiple comparison correction. There were no differences in volumes or other diffusion metrics in either the middle or inferior peduncles.Our trend level changes in the superior cerebellar peduncle in a non-clinical sample exhibiting psychotic experiences complement similar but more profound changes previously found in ultra-high-risk individuals and those with psychotic disorders. This suggests that superior cerebellar peduncle circuitry perturbations may occur early along in the psychosis spectrum.

4.
Biol Psychiatry Glob Open Sci ; 3(2): 264-273, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124352

RESUMO

Background: Gray matter abnormalities are observed across the psychosis spectrum. The trajectory of these abnormalities in healthy adolescents reporting subthreshold psychotic experiences (PEs) may provide insight into the neural mechanisms underlying psychotic symptoms. The risk of psychosis and additional psychopathology is even higher among these individuals who also report childhood adversity/DSM-5 diagnoses. Thus, the aims of this longitudinal study were to investigate PE-related volumetric changes in young people, noting any effects of childhood adversity/DSM-5 diagnosis. Methods: A total of 211 young people 11 to 13 years of age participated in the initial Adolescent Brain Development study. PE classification was determined by expert consensus at each time point. Participants underwent neuroimaging at 3 time points over 6 years. A total of 76 participants with at least one scan were included in the final sample; 34 who met criteria for PEs at least once across all the time points (PE group) and 42 control subjects. Data from 20 bilateral regions of interest were extracted for linear mixed-effects analyses. Results: Right hippocampal volume increased over time in the control group, with no increase in the PE group (p = .00352). DSM-5 diagnosis and childhood adversity were not significantly associated with right hippocampal volume. There was no significant effect of group or interaction in any other region. Conclusions: These findings further implicate right hippocampal volumetric abnormalities in the pathophysiology underlying PEs. Furthermore, as suggested by previous studies in those at clinical high risk for psychosis and those with first-episode psychosis, it is possible that these deficits may be a marker for later clinical outcomes.

5.
Eur J Neurosci ; 56(7): 5116-5131, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36004608

RESUMO

Psychotic experiences (PEs) such as hallucinations and delusions are common among young people without psychiatric diagnoses and are associated with connectivity and white matter abnormalities, particularly in the limbic system. Using diffusion magnetic resonance imaging (MRI) in adolescents with reported PEs and matched controls, we examined the cingulum white matter tract along its length rather than as the usually reported single indivisible structure. Complex regional differences in diffusion metrics were found along the bundle at key loci following Bonferroni significance adjustment (p < .00013) with moderate to large effect sizes (.11-.76) throughout all significant subsegments. In this prospective community-based cohort of school-age children, these findings suggest that white matter alterations in the limbic system may be more common in the general non-clinical adolescent population than previously thought. Such white matter alternations may only be uncovered using a similar more granular along-tract analysis of white matter tracts.


Assuntos
Substância Branca , Adolescente , Criança , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Rede Nervosa , Estudos Prospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
6.
Syst Rev ; 11(1): 44, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292116

RESUMO

BACKGROUND: The hippocampus has for long been known for its ability to form new, declarative memory. However, emerging findings across conditions in the psychosis spectrum also implicate its role in emotional regulation. Systematic reviews have demonstrated consistent volume atrophic changes in the hippocampus. The aim of the systematic review and metanalysis which will follow from this protocol will be to investigate the volume-based neuroimaging findings across each of the subfields of the hippocampus in psychosis independent of diagnosis. METHODS: Volume changes across subfields of the hippocampus in psychotic illnesses will be assessed by systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). MRI neuroimaging studies of patients with a definitive diagnosis of psychosis (including brief pre-diagnostic states) will be included. Studies lacking adequate controls, illicit drug use, medical psychosis, history of other significant psychiatric comorbidities, or emphasis on age groups above 65 or below 16 will be excluded. Subfields investigated will include the CA1, CA2/3, CA4, subiculum, presubiculum, parasubiculum, dentate gyrus, stratum, molecular layer, granular cell layer, entorhinal cortex, and fimbria. Two people will independently screen abstracts from the output of the search to select suitable studies. This will be followed by the two reviewers performing a full-text review of the studies which were selected based on suitable abstracts. One reviewer will independently perform all the data extraction, and another reviewer will then systemically check all the extracted information using the original articles to ensure accuracy. Statistical analysis will be performed using the metafor and meta-packages in R Studio with the application of the random-effects model. DISCUSSION: This study will provide insight into the volumetric changes in psychosis of the subfields of the hippocampus, independent of diagnosis. This may shed light on the intricate neural pathology which encompasses psychosis and will open avenues for further exploration of the structures identified as potential drivers of volume change. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020199558.


Assuntos
Transtornos Psicóticos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Metanálise como Assunto , Transtornos Psicóticos/diagnóstico por imagem , Revisões Sistemáticas como Assunto
7.
Neuroimage Clin ; 33: 102957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35149304

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Advances in diffusion magnetic resonance imaging (MRI) acquisition sequences and analytic techniques have led to growing body of evidence that abnormal white matter microstructure is a core pathophysiological feature of ADHD. This systematic review provides a qualitative assessment of research investigating microstructural organisation of white matter amongst children and adolescents with ADHD. This review included 46 studies in total, encompassing multiple diffusion MRI imaging techniques and analytic approaches, including whole-brain, region of interest and connectomic analyses. Whole-brain and region of interest analyses described atypical organisation of white matter microstructure in several white matter tracts: most notably in frontostriatal tracts, corpus callosum, superior longitudinal fasciculus, cingulum bundle, thalamic radiations, internal capsule and corona radiata. Connectomic analyses, including graph theory approaches, demonstrated global underconnectivity in connections between functionally specialised networks. Although some studies reported significant correlations between atypical white matter microstructure and ADHD symptoms or other behavioural measures there was no clear pattern of results. Interestingly however, many of the findings of disrupted white matter microstructure were in neural networks associated with key neuropsychological functions that are atypical in ADHD. Limitations to the extant research are outlined in this review and future studies in this area should carefully consider factors such as sample size, sex balance, head motion and medication status.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substância Branca , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Encéfalo , Criança , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Substância Branca/patologia
8.
Cells ; 10(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34359997

RESUMO

The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.


Assuntos
Neurônios Adrenérgicos/patologia , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Reserva Cognitiva/fisiologia , Substância Cinzenta/diagnóstico por imagem , Locus Cerúleo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Atenção/fisiologia , Teorema de Bayes , Estudos de Casos e Controles , Neurônios Colinérgicos/patologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Neurônios Dopaminérgicos/patologia , Escolaridade , Exercício Físico/fisiologia , Feminino , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Locus Cerúleo/patologia , Locus Cerúleo/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Neuroimagem , Tamanho do Órgão , Neurônios Serotoninérgicos/patologia , Fatores Sexuais
9.
Neuroimage Clin ; 31: 102781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34384996

RESUMO

The role of the amygdala in the experience of emotional states and stress is well established. Connections from the amygdala to the hypothalamus activate the hypothalamic-pituitaryadrenal (HPA) axis and the cortisol response. Previous studies have failed to find consistent whole amygdala volume changes in Major Depressive Disorder (MDD), but differences may exist at the smaller substructural level of the amygdala nuclei. High-resolution T1 and T2-weighted-fluid-attenuated inversion recovery MRIs were compared between 80 patients with MDD and 83 healthy controls (HC) using the automated amygdala substructure module in FreeSurfer 6.0. Volumetric assessments were performed for individual nuclei and three anatomico-functional composite groups of nuclei. Salivary cortisol awakening response (CAR), as a measure of HPA responsivity, was measured in a subset of patients. The right medial nucleus volume was larger in MDD compared to HC (p = 0.002). Increased right-left volume ratios were found in MDD for the whole amygdala (p = 0.004), the laterobasal composite (p = 0.009) and in the central (p = 0.003) and medial (p = 0.014) nuclei. The CAR was not significantly different between MDD and HC. Within the MDD group the left corticoamygdaloid transition area was inversely correlated with the CAR, as measured by area under the curve (AUCg) (p ≤ 0.0001). In conclusion, our study found larger right medial nuclei volumes in MDD compared to HC and relatively increased right compared to left whole and substructure volume ratios in MDD. The results suggest that amygdala substructure volumes may be involved in the pathophysiology of depression.


Assuntos
Transtorno Depressivo Maior , Tonsila do Cerebelo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Hidrocortisona , Imageamento por Ressonância Magnética
10.
Chronic Stress (Thousand Oaks) ; 4: 2470547020944553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015518

RESUMO

Medial temporal lobe structures have long been implicated in the pathogenesis of major depressive disorder. Although findings of smaller hippocampal and amygdalar volumes are common, inconsistencies remain in the literature. In this targeted review, we examine recent and significant neuroimaging papers examining the volumes of these structures in major depressive disorder. A targeted PubMed/Google Scholar search was undertaken focusing on volumetric neuroimaging studies of the hippocampus and amygdala in major depressive disorder. Where possible, mean volumes and accompanying standard deviations were extracted allowing computation of Cohen's ds effect sizes. Although not a meta-analysis, this allows a broad comparison of volume changes across studies. Thirty-nine studies in total were assessed. Hippocampal substructures and amygdale substructures were investigated in 11 and 2 studies, respectively. The hippocampus was more consistently smaller than the amygdala across studies, which is reflected in the larger cumulative difference in volume found with the Cohen's ds calculations. The left and right hippocampi were, respectively, 92% and 91.3% of the volume found in controls, and the left and right amygdalae were, respectively, 94.8% and 92.6% of the volume of controls across all included studies. The role of stress in temporal lobe structure volume reduction in major depressive disorder is discussed.

11.
Schizophr Bull ; 46(6): 1608-1618, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614036

RESUMO

Abnormal functional connectivity (FC, the temporal synchronization of activation across distinct brain regions) of the default mode (DMN), salience (SN), central executive (CEN), and motor (MN) networks is well established in psychosis. However, little is known about FC in individuals, particularly adolescents, reporting subthreshold psychotic experiences (PE) and their trajectory over time. Thus, the aim of this study was to investigate the FC of these networks in adolescents with PE. In this population-based case-control study, 24 adolescents (mean age = 13.58) meeting the criteria for PE were drawn from a sample of 211 young people recruited and scanned for a neuroimaging study, with a follow-up scan 2 years later (n = 18, mean age = 15.78) and compared to matched controls drawn from the same sample. We compared FC of DMN, SN, CEN, and MN regions between PE and controls using whole-brain FC analyses. At both timepoints, the PE group displayed significant hypoconnectivity compared to controls. At baseline, FC in the PE group was decreased between MN and DMN regions. At follow-up, dysconnectivity in the PE group was more widespread. Over time, controls displayed greater FC changes than the PE group, with FC generally increasing between MN, DMN, and SN regions. Adolescents with PE exhibit hypoconnectivity across several functional networks also found to be hypoconnected in established psychosis. Our findings highlight the potential for studies of adolescents reporting PE to reveal early neural correlates of psychosis and support further investigation of the role of the MN in PE and psychotic disorders.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Rede de Modo Padrão/fisiopatologia , Rede Nervosa/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Adolescente , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem
12.
PLoS One ; 15(6): e0233670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492020

RESUMO

AIMS: Smaller hippocampal volumes are among the most consistently reported neuroimaging findings in schizophrenia. However, little is known about hippocampal volumes in people who report psychotic experiences. This study investigated differences in hippocampal volume between young people without formal diagnoses who report psychotic experiences (PEs) and those who do not report such experiences. This study also investigated if any differences persisted over two years. METHODS: A nested case-control study of 25 adolescents (mean age 13.5 years) with reported PEs and 25 matched controls (mean age 13.36 years) without PEs were drawn from a sample of 100 local schoolchildren. High-resolution T1-weighted anatomical imaging and subsequent automated cortical segmentation (Freesurfer 6.0) was undertaken to determine total hippocampal volumes. Comprehensive semi-structured clinical interviews were also performed including information on PEs, mental diagnoses and early life stress (bullying). Participants were invited for a second scan at two years. RESULTS: 19 adolescents with PEs and 19 controls completed both scans. Hippocampal volumes were bilaterally lower in the PE group compared to the controls with moderate effects sizes both at baseline [left hippocampus p = 0.024 d = 0.736, right hippocampus p = 0.018, d = 0.738] and at 2 year follow up [left hippocampus p = 0.027 d = 0.702, right = 0.048 d = 0.659] throughout. These differences survived adjustment for co-morbid mental disorders and early life stress. CONCLUSIONS: Psychotic experiences are associated with total hippocampal volume loss in young people and this volume loss appears to be independent of possible confounders such as co-morbid disorders and early life stress.


Assuntos
Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Adolescente , Bullying , Estudos de Casos e Controles , Criança , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Tamanho do Órgão
13.
Brain Struct Funct ; 225(5): 1437-1458, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32367265

RESUMO

The often-overlooked dorsal diencephalic conduction system (DDCS) is a highly conserved pathway linking the basal forebrain and the monoaminergic brainstem. It consists of three key structures; the stria medullaris, the habenula and the fasciculus retroflexus. The first component of the DDCS, the stria medullaris, is a discrete bilateral tract composed of fibers from the basal forebrain that terminate in the triangular eminence of the stalk of the pineal gland, known as the habenula. The habenula acts as a relay hub where incoming signals from the stria medullaris are processed and subsequently relayed to the midbrain and hindbrain monoaminergic nuclei through the fasciculus retroflexus. As a result of its wide-ranging connections, the DDCS has recently been implicated in a wide range of behaviors related to reward processing, aversion and motivation. As such, an understanding of the structure and connections of the DDCS may help illuminate the pathophysiology of neuropsychiatric disorders such as depression, addiction and pain. This is the first review of all three components of the DDCS, the stria medullaris, the habenula and the fasciculus retroflexus, with particular focus on their anatomy, function and development.


Assuntos
Diencéfalo/anatomia & histologia , Diencéfalo/fisiologia , Habenula/anatomia & histologia , Habenula/fisiologia , Mesencéfalo/anatomia & histologia , Mesencéfalo/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Animais , Humanos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Rombencéfalo/anatomia & histologia , Rombencéfalo/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32033932

RESUMO

OBJECTIVE: To evaluate the accuracy of magnetic resonance diffusion weighted imaging (DWI) featuring constrained spherical deconvolution-based tractography in tracking the extracranial course of the facial nerve to provide a reliable facial nerve map to facilitate well-tolerated and effective tumor resection. STUDY DESIGN: Magnetic resonance DWI was conducted on 2 parotid-healthy cadaveric patients with various protocols to identify the best representation of the extracranial facial nerve tract. This was subsequently correlated to dissection of the facial nerves to ascertain anatomic validation. These protocols were applied to 2 live, parotid-healthy patients to assess feasibility of in vivo facial nerve tract identification. RESULTS: Correlations between imaged tracts and the anatomic course of the extracranial facial nerve were identified to an accuracy of 1 mm. The main trunk and bifurcation tracts were identified on imaging. Fractional anisometry values in cadaveric and live patients were within the range expected for the facial nerve within the parotid gland. CONCLUSIONS: Our results indicated the potential for accurate 3-dimensional visualization of the extracranial course of the facial nerve, which could have diagnostic implications in differentiating benign from malignant tumors and, crucially, neural involvement. Preoperative planning applications of DWI could help in planning surgical approaches and providing focused counseling.


Assuntos
Imagem de Tensor de Difusão , Nervo Facial , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Glândula Parótida
15.
Schizophr Res ; 215: 378-384, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495700

RESUMO

Around 1 in 5 children under 13 years old experience sub-clinical psychotic experiences (PEs) like hallucinations and delusions. While PEs in childhood are a significant risk factor for adult psychotic disorders, the majority of those experiencing childhood PEs do not develop a psychotic disorder. Individual differences in regional brain maturation rates may be responsible for this age-related and often transient emergence of PEs. Fronto-temporal association tracts undergo extensive maturation and myelination throughout childhood and adolescence, thus we focus on individual differences in one such tract, the arcuate fasciculus. A normative population-based sample of children (aged 11-13) attended a clinical interview and MRI (n = 100), 25 of whom were identified as reporting strong PEs. This group had reduced mean and radial diffusivity in the arcuate fasciculus compared with a group of matched controls (n = 25) who reported no PEs. The group difference was greater in the left hemisphere than the right. Mediation analyses showed that this group difference was driven predominantly by perceptual disturbances and an along-tract analysis showed that the group difference was greatest approximately halfway between the frontal and temporal termination points of the tract (adjacent to the left lateral ventricle). This study is the first to investigate links between arcuate fasciculus diffusivity and psychotic experiences in a population sample of children.


Assuntos
Delusões/patologia , Lobo Frontal/patologia , Alucinações/patologia , Transtornos Psicóticos/patologia , Lobo Temporal/patologia , Substância Branca/patologia , Adolescente , Estudos de Casos e Controles , Criança , Delusões/diagnóstico por imagem , Delusões/fisiopatologia , Imagem de Tensor de Difusão , Feminino , Lobo Frontal/diagnóstico por imagem , Alucinações/diagnóstico por imagem , Alucinações/fisiopatologia , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
16.
Syst Rev ; 8(1): 338, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882014

RESUMO

BACKGROUND: Chronic pain is pain greater than 3 months duration that may result from disease, trauma, surgery, or unknown origin. The overlap between the psychological, behavioural, and management aspects of pain suggest that limbic brain neurochemistry plays a role in chronic pain pathology. Proton magnetic resonance spectroscopy (1H-MRS) can evaluate in vivo brain metabolites including creatine, N-acetylaspartate, myo-inositol, choline, glutamate, glutamine, and gamma-aminobutyric acid in chronic pain; however, a comprehensive systemic review of metabolite expression patterns across all brain areas has yet to be performed. METHODS AND ANALYSIS: Online databases including PubMed/MEDLINE, Google Scholar, EMBASE, the Cochrane Library, OVID, and PsycINFO will be searched for articles relating to 1H-MRS and chronic pain. Study inclusion criteria will include ages of between 18 and 65 years with a definite diagnosis of chronic pain, no comorbidities, clearly stated brain volumes of interest, and imaging protocols, with comparisons to healthy controls. Two reviewers will extract data relating to volumes of interest, metabolites, study participant demographics, diagnostic method and pain scores, treatments and duration of treatment, scanner information, 1H-MRS acquisition protocols, and spectral processing software. Where possible, volumes of interest will be reassigned as regions of interest consistent with known regional anatomical and functional properties to increase the power and relevance of the analysis. Statistical analyses will then be conducted using STATA. A central common pathway may exist for chronic pain due to the behavioural manifestations and management similarities between its different types. The goal of this systemic review is to generate a comprehensive neurochemical theory of chronic pain in different brain compartments. SYSTEMATIC REVIEW REGISTRATION: This study is registered with PROSPERO CRD42018112640.


Assuntos
Ácido Aspártico , Dor Crônica , Creatina , Processamento de Imagem Assistida por Computador , Espectroscopia de Prótons por Ressonância Magnética , Humanos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dor Crônica/diagnóstico por imagem , Dor Crônica/metabolismo , Creatina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Revisões Sistemáticas como Assunto
17.
Psychiatry Res Neuroimaging ; 287: 75-86, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31004996

RESUMO

The objective of this study was to determine the effect of major depressive disorder (MDD) on white matter microstructures after a 6-year period compared to healthy controls (HC). This study included a small sample size of 26 participants, including 14 patients with MDD clinically diagnosed at baseline, and 12 HCs. MRI brain scans were conducted at baseline and follow-up, 75.32 (±2.25) months after the initial scan. Tractography of 7 regions including the fornix, cingulum, superior longitudinal fasciculus, inferior fronto-occipital fasciculus and uncinate fasciculus were conducted using ExploreDTI software. Both groups showed significant reduction in tract integrity between time points. MDD diagnosis was shown to have an effect on longitudinal FA of the left dorsal cingulum and the left parahippocampal cingulum. A significant inverse relationship was found between ΔFA [baseline FA - follow-up FA] of the right uncinate fasciculus and the left rostral cingulum with ΔHAM-D [baseline HAM-D - follow-up HAM-D] within the MDD group. These preliminary findings support the hypothesis that limbic structures including the cingulum are involved in MDD pathophysiology and may be affected even after remission. Moreover, they indicate that recovery from depression symptoms may slow the rate of WM degradation associated with aging in these regions of interest.


Assuntos
Transtorno Depressivo Maior/fisiopatologia , Sistema Límbico/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Fórnice , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa , Substância Branca/fisiopatologia
18.
Front Neuroanat ; 13: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833890

RESUMO

The thalamocingulate tract is a key component of the Papez circuit that connects the anterior thalamic nucleus (ATN) to the cingulum bundle. While the other white matter connections, consisting of the fornix, cingulum bundle and mammillothalamic tract, were well defined in Papez's original 1937 paper, the anatomy of the thalamocingulate pathway was mentioned only in passing. Subsequent research has been unable to clarify the precise anatomical trajectory of this tract. In particular, the site of thalamocingulate tract interactions with the cingulum bundle have been inconsistently reported. This review aims to synthesize research on this least studied component of the Papez circuit. A systemic approach to reviewing historical anatomical dissection and neuronal tracing studies as well as contemporary diffusion magnetic resonance imaging studies of the thalamocingulate tract was undertaken across species. We found that although inconsistent, prior research broadly encompasses two differing descriptions of how the ATN interfaces with the cingulum after passing laterally through the anterior limb of the internal capsule. The first group of studies show that the pathway turns medially and rostrally and passes to the anterior cingulate region (Brodmann areas 24, 33, and 32) only. A second group suggests that the thalamocingulate tract interfaces with both the anterior and posterior cingulate (Brodmann areas 23 and 31) and retrosplenial region (Brodmann area 29). We discuss potential reasons for these discrepancies such as altering methodologies and species differences. We also discuss how these inconsistencies may be resolved in further research with refinements of terminology for the cingulate cortex and the thalamocingulate tract. Understanding the precise anatomical course of the last remaining unresolved final white matter tract in the Papez circuit may facilitate accurate investigation of the role of the complete Papez circuit in emotion and memory.

19.
Biol Psychiatry ; 85(6): 487-497, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528746

RESUMO

BACKGROUND: Hippocampal volume reduction is the most replicated finding in neuroimaging studies of major depressive disorder (MDD). Varying hippocampal volume definition is a well-established problem in this field. Given that hippocampal function can be mapped onto anatomically defined substructures and that detailed examination of substructure volumes is now possible, we examined different hippocampal composite measures in MDD to look for hippocampal markers of MDD. METHODS: Magnetic resonance imaging brain scans were compared between 80 patients with a range of MDD duration and 83 healthy control subjects. High-resolution T1-weighted and T2-weighted-fluid-attenuated inversion recovery magnetic resonance images were examined using the automated hippocampal substructure module in FreeSurfer 6.0. Between-group volumetric assessments were performed at substructure and composite substructures levels. RESULTS: Patients with MDD showed a bilateral pattern of volume reduction in principal hippocampal substructures: the cornu ammonis (CA1-CA4), dentate gyrus, and subiculum. Changes were more pronounced on the left of these structures and in recurrent depression. CA2 to CA4 were the only substructures reduced in first-presentation depression. Overall changes were most marked in the left CA1, and CA1 volume was a predictor of illness duration. CONCLUSIONS: Hippocampal involvement in MDD is confined to principal substructures only. Differences between patients with MDD and healthy control subjects increased with progressively restricted hippocampal definitions, with the left CA1 emerging as a potential marker of MDD. Changes were more extensive in patients with recurrent, as opposed to first-presentation, MDD, suggesting a hippocampal disease process. These findings identify core hippocampal regions in the pathology of MDD, suggesting a potential marker of disease progression in MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Hipocampo/patologia , Adolescente , Adulto , Atrofia/patologia , Estudos de Casos e Controles , Dominância Cerebral , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Adulto Jovem
20.
Syst Rev ; 7(1): 158, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309391

RESUMO

BACKGROUND: Magnetic resonance spectroscopy (MRS) is a non-invasive analytical technique that investigates the presence and concentrations of brain metabolites. In the context of major depressive disorder (MDD), MRS has revealed regional biochemical changes in GABA, glutamate, and choline across different brain compartments. Technical and methodological advances in MRS data acquisition, in particular proton-based 1H-MRS, have resulted in a significant increase in the incidence of reports utilizing the technique for psychiatric disorder research and diagnosis. The most recent comprehensive meta-analysis reviewing MRS in MDD stems from 2006. Using contemporary systemic reviews and meta-analysis, the aim is to first test a neurochemical circuit-based theory of depression and then to determine if clinical scores relate to metabolite concentrations before and during treatment. METHODS: Region-specific metabolite changes in MDD will be assessed by systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Inclusion criteria will include participant age (18 to 65), English language studies, known regions of interest, and detailed documentation of 1H-MRS procedures. Reported brain regions will be standardized according neuroanatomical expertise allowing increased power of the meta-analysis. Regions of interest will initially include the hippocampus, thalamus, prefrontal cortex, anterior and posterior cingulate gyri, parietal lobe, and basal ganglia. Exclusion criteria will include comorbid psychiatric illness and drug use. Two independent reviewers will undertake all data extraction, while a third reviewer will check for reviewer discrepancies. Statistical analysis will be performed using STATA supplemented by Metan software and SPSS. DISCUSSION: This data will shed new light on the biochemical basis of depression in different brain regions, thereby highlighting the potential of MRS in identifying biomarkers and generating models of MDD and treatment response. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42018091494.


Assuntos
Transtorno Depressivo Maior/metabolismo , Metanálise como Assunto , Neuroquímica , Espectroscopia de Prótons por Ressonância Magnética/métodos , Revisões Sistemáticas como Assunto , Química Encefálica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA