Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sleep ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629438

RESUMO

The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, genetic studies of the role of specific NFκB transcription factors in sleep have been limited. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the unique expression pattern of a Dif- GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was reduced in Dif mutants and pan-neuronal over-expression of nur also suppressed the Dif mutant phenotype by significantly increasing sleep and reducing nighttime arousability. Together, these findings indicate that Dif functions from brain to target nemuri and to promote deep sleep.

2.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905096

RESUMO

The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, efforts have been limited toward understanding how specific NFκB transcription factors function in sleep. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the distribution of a Dif-associated GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was suppressed in Dif mutants and pan-neuronal over-expression of nur also suppressed the Dif mutant phenotype. Together, these findings indicate that Dif functions from brain to target nemuri and to promote sleep.

3.
Hum Vaccin Immunother ; 12(4): 1009-26, 2016 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-26618392

RESUMO

Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.


Assuntos
Adjuvantes Imunológicos , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza , Transferência de Tecnologia , Avaliação Pré-Clínica de Medicamentos , Emulsões/química , Humanos , Virus da Influenza A Subtipo H5N1/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Óleos , Pandemias/prevenção & controle , Romênia , Vírion/fisiologia , Inativação de Vírus
4.
Vaccine ; 31(12): 1633-40, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23103197

RESUMO

Many developing countries lack or have inadequate pandemic influenza vaccine manufacturing capacity. In the 2009 H1N1 pandemic, this led to delayed and inadequate vaccine coverage in the developing world. Thus, bolstering developing country influenza vaccine manufacturing capacity is urgently needed. The Cantacuzino Institute in Bucharest, Romania has been producing seasonal influenza vaccine since the 1970s, and has the capacity to produce ∼5 million doses of monovalent vaccine in the event of an influenza pandemic. Inclusion of an adjuvant in the vaccine could enable antigen dose sparing, expanding vaccine coverage and potentially allowing universal vaccination of the Romanian population and possibly neighboring countries. However, adjuvant formulation and manufacturing know-how are difficult to access. This manuscript describes the successful transfer of oil-in-water emulsion adjuvant manufacturing and quality control technologies from the Infectious Disease Research Institute in Seattle, USA to the Cantacuzino Institute. By describing the challenges and accomplishments of the project, it is hoped that the knowledge and experience gained will benefit other institutes involved in similar technology transfer projects designed to facilitate increased vaccine manufacturing capacity in developing countries.


Assuntos
Adjuvantes Imunológicos/normas , Vacinas contra Influenza/normas , Transferência de Tecnologia , Tecnologia Farmacêutica/normas , Adjuvantes Imunológicos/farmacologia , Países em Desenvolvimento , Emulsões/farmacologia , Emulsões/normas , Fiscalização e Controle de Instalações , Vacinas contra Influenza/farmacologia , Cooperação Internacional , Controle de Qualidade , Romênia , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA