Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555655

RESUMO

ALS-linked mutations induce aberrant conformations within the SOD1 protein that are thought to underlie the pathogenic mechanism of SOD1-mediated ALS. Although clinical trials are underway for gene silencing of SOD1, these approaches reduce both wild-type and mutated forms of SOD1. Here, we sought to develop anti-SOD1 nanobodies with selectivity for mutant and misfolded forms of human SOD1 over wild-type SOD1. Characterization of two anti-SOD1 nanobodies revealed that these biologics stabilize mutant SOD1 in vitro. Further, SOD1 expression levels were enhanced and the physiological subcellular localization of mutant SOD1 was restored upon co-expression of anti-SOD1 nanobodies in immortalized cells. In human motor neurons harboring the SOD1 A4V mutation, anti-SOD1 nanobody expression promoted neurite outgrowth, demonstrating a protective effect of anti-SOD1 nanobodies in otherwise unhealthy cells. In vitro assays revealed that an anti-SOD1 nanobody exhibited selectivity for human mutant SOD1 over endogenous murine SOD1, thus supporting the preclinical utility of anti-SOD1 nanobodies for testing in animal models of ALS. In sum, the anti-SOD1 nanobodies developed and presented herein represent viable biologics for further preclinical testing in human and mouse models of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Anticorpos de Domínio Único/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Dobramento de Proteína , Neurônios Motores/metabolismo , Crescimento Neuronal , Mutação
2.
Protein Sci ; 30(9): 1804-1817, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34076319

RESUMO

With over 150 heritable mutations identified as disease-causative, superoxide dismutase 1 (SOD1) has been a main target of amyotrophic lateral sclerosis (ALS) research and therapeutic efforts. However, recent evidence has suggested that neither loss of function nor protein aggregation is responsible for promoting neurotoxicity. Furthermore, there is no clear pattern to the nature or the location of these mutations that could suggest a molecular mechanism behind SOD1-linked ALS. Here, we utilize reliable and accurate computational techniques to predict the perturbations of 10 such mutations to the free energy changes of SOD1 as it matures from apo monomer to metallated dimer. We find that the free energy perturbations caused by these mutations strongly depend on maturational progress, indicating the need for state-specific therapeutic targeting. We also find that many mutations exhibit similar patterns of perturbation to native and non-native maturation, indicating strong thermodynamic coupling between the dynamics at various sites of maturation within SOD1. These results suggest the presence of an allosteric network in SOD1 which is vulnerable to disruption by these mutations. Analysis of these perturbations may contribute to uncovering a unifying molecular mechanism which explains SOD1-linked ALS and help to guide future therapeutic efforts.


Assuntos
Apoproteínas/química , Superóxido Dismutase-1/química , Zinco/química , Regulação Alostérica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Cátions Bivalentes , Expressão Gênica , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Mutação , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Termodinâmica , Zinco/metabolismo
3.
Sci Rep ; 8(1): 16393, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401824

RESUMO

Most human neurodegenerative diseases share a phenotype of neuronal protein aggregation. In Amyotrophic Lateral Sclerosis (ALS), the abundant protein superoxide dismutase (SOD1) or the TAR-DNA binding protein TDP-43 can aggregate in motor neurons. Recently, numerous studies have highlighted the ability of aggregates to spread from neuron to neuron in a prion-like fashion. These studies have typically focused on the use of neuron-like cell lines or neurons that are not normally affected by the specific aggregated protein being studied. Here, we have investigated the uptake of pre-formed SOD1 aggregates by cultures containing pluripotent stem cell-derived human motor neurons. We found that all cells take up aggregates by a process resembling fluid-phase endocytosis, just as found in earlier studies. However, motor neurons, despite taking up smaller amounts of SOD1, were much more vulnerable to the accumulating aggregates. Thus, the propagation of disease pathology depends less on selective uptake than on selective response to intracellular aggregates. We further demonstrate that anti-SOD1 antibodies, being considered as ALS therapeutics, can act by blocking the uptake of SOD1, but also by blocking the toxic effects of intracellular SOD1. This work demonstrates the importance of using disease relevant cells even in studying phenomena such as aggregate propagation.


Assuntos
Morte Celular , Neurônios Motores/citologia , Agregados Proteicos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Linhagem Celular , Humanos , Neurônios Motores/metabolismo , Transporte Proteico
4.
Sci Rep ; 8(1): 804, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339826

RESUMO

Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can provide sources for midbrain dopaminergic (mDA) neural progenitors (NPCs) for cell therapy to treat Parkinson's disease (PD) patients. However, the well-known line-to-cell line variability in the differentiation capacity of individual cell lines needs to be improved for the success of this therapy. To address this issue, we sought to identify mDA NPC specific cell surface markers for fluorescence activated cell sorting (FACS). Through RNA isolation after sorting for NPCs based on staining for cell-specific transcription factors followed by microarray, we identified two positive cell surface markers (CORIN and CD166) and one negative cell surface marker (CXCR4) for mDA NPC sorting. These three markers can enrich floor plate NPCs to 90% purity, and the sorted NPCs more efficiently differentiate to mature dopaminergic neurons compared to unsorted or CORIN+ alone mDA NPCs. This surface marker identification strategy can be used broadly to facilitate isolation of cell subtypes of interest from heterogeneous cultures.


Assuntos
Biomarcadores/análise , Citometria de Fluxo/métodos , Células-Tronco Embrionárias Humanas/química , Células-Tronco Embrionárias Humanas/fisiologia , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas de Membrana/análise , Antígenos CD/análise , Moléculas de Adesão Celular Neuronais/análise , Proteínas Fetais/análise , Células-Tronco Embrionárias Humanas/classificação , Humanos , Células-Tronco Pluripotentes Induzidas/classificação , Receptores CXCR4/análise , Serina Endopeptidases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA