Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
mSphere ; : e0017824, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591888

RESUMO

The genome of Pseudomonas fluorescens encodes >50 proteins predicted to play a role in bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)-mediated biofilm formation. We built a network representation of protein-protein interactions and extracted key information via multidimensional scaling (i.e., principal component analysis) of node centrality measures, which measure features of proteins in a network. Proteins of different domain types (diguanylate cyclase, dual domain, phosphodiesterase, PilZ) exhibit unique network behavior and can be accurately classified by their network centrality values (i.e., roles in the network). The predictive power of protein-protein interactions in biofilm formation indicates the possibility of localized pools of c-di-GMP. A regression model showed a statistically significant impact of protein-protein interactions on the extent of biofilm formation in various environments. These results highlight the importance of a localized c-di-GMP signaling, extend our understanding of signaling by this second messenger beyond the current "Bow-tie Model," support a newly proposed "Hub Model," and suggest future avenues of investigation.

2.
J Bacteriol ; : e0011324, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624220
3.
Microbiol Spectr ; : e0016624, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687073

RESUMO

Swarming motility in pseudomonads typically requires both a functional flagellum and the production/secretion of a biosurfactant. Published work has shown that the wild-type Pseudomonas fluorescens Pf0-1 is swarming deficient due to a point mutation in the gacA gene, which until recently was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by P. fluorescens Pf0-1. Here, we demonstrate that a ΔrsmA ΔrsmE ΔrsmI mutant, which phenotypically mimics Gac/Rsm pathway overstimulation, is proficient at swarming motility. RsmA and RsmE appear to play a key role in this regulation. Transposon mutagenesis of the ΔrsmA ΔrsmE ΔrsmI mutant identified multiple factors that impact swarming motility, including pathways involved in flagellar synthesis and biosurfactant production/secretion. We find that loss of genes linked to biosurfactant Gacamide A biosynthesis or secretion impacts swarming motility, as does loss of the alternative sigma factor FliA, which results in a defect in flagellar function. Collectively, these findings provide evidence that P. fluorescens Pf0-1 can swarm if the Gac/Rsm pathway is activated, highlight the regulatory complexity of swarming motility in this strain, and demonstrate that the cyclic lipopeptide Gacamide A is utilized as a biosurfactant for swarming motility.IMPORTANCESwarming motility is a coordinated process that allows communities of bacteria to collectively move across a surface. For P. fluorescens Pf0-1, this phenotype is notably absent in the parental strain, and to date, little is known about the regulation of swarming in this strain. Here, we identify RsmA and RsmE as key repressors of swarming motility via modulating the levels of biosurfactant production/secretion. Using transposon mutagenesis and subsequent genetic analyses, we further identify potential regulatory mechanisms of swarming motility and link Gacamide A biosynthesis and transport machinery to swarming motility.

4.
Proc Natl Acad Sci U S A ; 121(13): e2320410121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498718

RESUMO

Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sulfatos/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Biofilmes , Proteínas de Transporte/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
mBio ; 15(4): e0332223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426789

RESUMO

Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the wild-type (WT) strain, with MotAB stators produced at an approximately 40-fold higher level than MotCD stators. However, utilization of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily utilized at low viscosities. Importantly, we find that cells with MotCD stators are ~10× more likely to have an active motor compared to cells uses the MotAB stators. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa, transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator utilization. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the "jamming transition" in active granular matter.IMPORTANCEIt is now known that there exist multifactorial influences on swarming motility for P. aeruginosa, but it is not clear precisely why stator selection in the flagellum motor is so important. We show differential production and utilization of the stators. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies: the fraction of flagellum-active cells in a population on average with MotCD is active ~10× more often than with MotAB. What emerges from this complex landscape of stator utilization and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility and how the stators potentially relate to surface sensing circuitry.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Biofilmes , Movimento , Flagelos/genética
6.
J Bacteriol ; 206(4): e0007324, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38529952
7.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405928

RESUMO

Bile acids (BAs) are gastrointestinal metabolites that serve dual functions in lipid absorption and cell signaling. BAs circulate actively between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with intestinal cells in vivo remain ill-defined. Through multi-site sampling of nearly 100 BA species in individual wild type mice, as well as mice lacking the ileal BA transporter, Asbt/Slc10a2, we calculate the ileal BA pool in fasting C57BL/6J mice to be ~0.3 µmoles/g. Asbt-mediated transport accounts for ~80% of this pool and amplifies size, whereas passive absorption explains the remaining ~20%, and generates diversity. Accordingly, ileal BA pools in mice lacking Asbt are ~5-fold smaller than in wild type controls, enriched in secondary BA species normally found in the colon, and elicit unique transcriptional responses in cultured ileal explants. This work quantitatively defines ileal BA pools in mice and reveals how BA dysmetabolism can impinge on intestinal physiology.

8.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38293239

RESUMO

Swarming motility in pseudomonads typically requires both a functional flagellum and production/secretion of a biosurfactant. Published work has shown that the wild-type Pseudomonas fluorescens Pf0-1 is swarming-deficient due to a point mutation in the gacA gene, which until recently, was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by P. fluorescens Pf0-1. Here, we demonstrate that a ΔrsmA ΔrsmE ΔrsmI mutant, which phenotypically mimics Gac/Rsm pathway overstimulation, is proficient at swarming motility. RsmA and RsmE appear to play a key role in this regulation. Transposon mutagenesis of the ΔrsmA ΔrsmE ΔrsmI mutant identified multiple factors that impact swarming motility, including pathways involved in flagellar synthesis and biosurfactant production/secretion. We find that loss of genes linked to biosurfactant Gacamide A biosynthesis or secretion impact swarming motility, as does loss of the alternative sigma factor FliA, which results in a defect in flagellar function. Collectively, these findings provide evidence that P. fluorescens Pf0-1 can swarm if the Gac/Rsm pathway is activated, highlight the regulatory complexity of swarming motility in this strain, and demonstrate that the cyclic lipopeptide Gacamide A is utilized as a biosurfactant for swarming motility.

9.
J Bacteriol ; 206(1): e0028623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169295

RESUMO

The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation, and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization, and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting nonCF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short-chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but also altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of CF gut dysbiosis. IMPORTANCE Cystic fibrosis is an autosomal recessive disease that disrupts ion transport at mucosal surfaces, leading to mucus accumulation and altered physiology of both the lungs and the intestines, among other organs, with the resulting altered environment contributing to an imbalance of microbial communities. Culture media representative of the CF airway have been developed and validated; however, no such medium exists for modeling the CF intestine. Here, we develop and validate a first-generation culture medium inclusive of features that are altered in the CF colon. Our findings suggest this novel medium, called CF-MiPro, as a maintenance medium for CF gut microbiome samples and a flexible tool for studying key drivers of CF-associated gut dysbiosis.


Assuntos
Fibrose Cística , Microbioma Gastrointestinal , Microbiota , Adulto , Animais , Humanos , Criança , Fibrose Cística/microbiologia , Disbiose , Sistema Respiratório , Regulador de Condutância Transmembrana em Fibrose Cística
10.
mBio ; 15(2): e0314423, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38179971

RESUMO

Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid propionate. We demonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR-/-) Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1ß-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. The introduction of Bacteroides-supplemented stool from infants with cystic fibrosis into the gut of CftrF508del mice results in higher propionate in the stool as well as the reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relative abundance of Escherichia coli, indicating a potential interaction between these two microbes, consistent with previous clinical studies. For a Bacteroides propionate mutant in the mouse model, pro-inflammatory cytokine KC is higher in the airway and serum compared with the wild-type (WT) strain, with no significant difference in the absolute abundance of these two strains. Taken together, our data indicate the potential multiple roles of Bacteroides-derived propionate in the modulation of systemic and airway inflammation and mediating the intestinal ecology of infants and children with CF. The roles of Bacteroides and the propionate it produces may help explain the observed gut-lung axis in CF and could guide the development of probiotics to mitigate systemic and airway inflammation for persons with CF.IMPORTANCEThe composition of the gut microbiome in persons with CF is correlated with lung health outcomes, a phenomenon referred to as the gut-lung axis. Here, we demonstrate that the intestinal microbe Bacteroides decreases inflammation through the production of the short-chain fatty acid propionate. Supplementing the levels of Bacteroides in an animal model of CF is associated with reduced systemic inflammation and reduction in the relative abundance of the opportunistically pathogenic group Escherichia/Shigella in the gut. Taken together, these data demonstrate a key role for Bacteroides and microbially produced propionate in modulating inflammation, gut microbial ecology, and the gut-lung axis in cystic fibrosis. These data support the role of Bacteroides as a potential probiotic in CF.


Assuntos
Fibrose Cística , Criança , Lactente , Humanos , Camundongos , Animais , Fibrose Cística/complicações , Regulador de Condutância Transmembrana em Fibrose Cística , Propionatos , Bacteroides/genética , Células CACO-2 , Inflamação/complicações , Modelos Animais de Doenças , Disbiose/complicações , Escherichia coli
11.
J Bacteriol ; 205(12): e0038123, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38059586

Assuntos
Bacteriologia
12.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045380

RESUMO

Biofilms of the sulfate reducing bacterium (SRB) Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses; however, the mechanisms of biofilm formation by DvH are not yet well-understood. Evidence suggests that a large adhesin, DvhA, may be contributing to biofilm formation in DvH. The dvhA gene and its neighbors encode proteins that resemble the Lap system, which regulates biofilm formation by Pseudomonas fluorescens, including a LapG-like protease DvhG and effector protein DvhD, which has key differences from the previously described LapD. By expressing the Lap-like adhesion components of DvH in P. fluorescens, our data support the model that the N-terminal fragment of the large adhesin DvhA serves as an adhesin "retention module" and is the target of the DvhG/DvhD regulatory module, thereby controlling cell-surface location of the adhesin. By heterologously expressing the DvhG/DvhD-like proteins in a P. fluorescens background lacking native regulation (ΔlapGΔlapD) we also show that cell surface regulation of the adhesin is dependent upon the intracellular levels of c-di-GMP. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.

13.
Gels ; 9(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998967

RESUMO

Honey has been used for centuries to reduce bacterial infection; Manuka honey (MH) possesses an additional antibacterial agent, Unique Manuka Factor (UMF). However, MH's physical properties challenge delivery to the wound site. Tissue-engineered scaffolds (cryogels/hydrogels) provide a potential vehicle for MH delivery, but effects on bacterial clearance and biofilm formation demand further examination. MH (0, 1, 5, or 10%) was incorporated into both chitosan-gelatin (1:4 ratio; 4%) cryogels and hydrogels. To assess physical changes, all scaffolds were imaged with scanning electron microscopy and subjected to swell testing to quantify pore size and rehydration potential, respectively. As MH concentration increased, both pore size and scaffold swelling capacity decreased. Both bacterial clearance and biofilm formation were also assessed, along with cellular infiltration. Bacterial clearance testing with S. aureus demonstrated that MH cryogels are superior to 0% control, indicating the potential to perform well against Gram-positive bacteria. However, higher concentrations of MH resulted in cell death over time. These results support our hypothesis that MH release from 5% cryogels would induce reduced viability for four bacteria species without compromising scaffold properties. These outcomes assist in the development of a standard of practice for incorporating MH into scaffolds and the evaluation of biofilm reduction.

14.
J Bacteriol ; 205(11): e0022523, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37930065

Assuntos
Biofilmes
15.
NPJ Biofilms Microbiomes ; 9(1): 78, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816780

RESUMO

Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogen Pseudomonas aeruginosa combined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnesses via perceiving varied mechanical stress and strain upon surface engagement.


Assuntos
GMP Cíclico , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiologia , GMP Cíclico/metabolismo , Biofilmes , Transdução de Sinais
16.
J Bacteriol ; 205(10): e0008022, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37747191
17.
Microbiol Spectr ; : e0220123, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772884

RESUMO

Bacterial infections in the lungs of persons with cystic fibrosis are typically composed of multispecies biofilm-like communities, which modulate clinically relevant phenotypes that cannot be explained in the context of a single species culture. Most analyses to date provide a picture of the transcriptional responses of individual pathogens; however, there is relatively little data describing the transcriptional landscape of clinically relevant multispecies communities. Harnessing a previously described cystic fibrosis-relevant, polymicrobial community model consisting of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica, we performed an RNA-Seq analysis on the biofilm population to elucidate the transcriptional profiles of the community grown in artificial sputum medium (ASM) as compared to growth in monoculture, without mucin, and in fresh medium supplemented with tobramycin. We provide evidence that, although the transcriptional profile of P. aeruginosa is community agnostic, the transcriptomes of S. aureus and S. sanguinis are community aware. Furthermore, P. aeruginosa and P. melaninogenica are transcriptionally sensitive to the presence of mucin in ASM, whereas S. aureus and S. sanguinis largely do not alter their transcriptional profiles in the presence of mucin when grown in a community. Only P. aeruginosa shows a robust response to tobramycin. Genetic studies of mutants altered in community-specific growth provide complementary data regarding how these microbes adapt to a community context. IMPORTANCE Polymicrobial infections constitute the majority of infections in the cystic fibrosis (CF) airway, but their study has largely been neglected in a laboratory setting. Our lab previously reported a polymicrobial community that can help explain clinical outcomes in the lungs of persons with CF. Here, we obtained transcriptional profiles of the community versus monocultures to provide transcriptional information about how this model community responds to CF-related growth conditions and perturbations. Genetic studies provide complementary functional outputs to assess how the microbes adapt to life in a community.

18.
J Bacteriol ; 205(9): e0015223, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37655913

RESUMO

Biofilm formation by the Gram-negative, Gammaproteobacteria Pseudomonas fluorescens relies on the repeats-in-toxin adhesins LapA and MapA in the cytoplasm, secretion of these adhesins through their respective type 1 secretion systems, and retention at the cell surface. Published work has shown that retention of the adhesins occurs via a post-translational mechanism involving the cyclic-di-GMP receptor LapD and the protease LapG. However, little is known about the underlying mechanisms that regulate the level of these adhesins. Here, we demonstrate that the master regulator FleQ modulates biofilm formation by both transcriptionally and post-transcriptionally regulating LapA and MapA. We find that a ΔfleQ mutant has a biofilm formation defect compared to the wild-type (WT) strain, which is attributed in part to a decrease in LapA and MapA abundance in the cell, despite the ΔfleQ mutant having increased levels of lapA and mapA transcripts compared to the WT strain. Through transposon mutagenesis and subsequent genetic analysis, we found that overstimulation of the Gac/Rsm pathway partially rescues biofilm formation in the ΔfleQ mutant background. Collectively, these findings provide evidence that FleQ regulates biofilm formation by both transcriptionally regulating the expression of the lapA and mapA genes and post-transcriptionally regulating the abundance of LapA and MapA, and that activation of the Gac/Rsm pathway can post-transcriptionally enhance biofilm formation by P. fluorescens. IMPORTANCE Biofilm formation is a highly coordinated process that bacteria undergo to colonize a variety of surfaces. For Pseudomonas fluorescens, biofilm formation requires the production and localization of repeats-in-toxin adhesins to the cell surface. To date, little is known about the underlying mechanisms that regulate biofilm formation by P. fluorescens. Here, we identify FleQ as a key regulator of biofilm formation that modulates both gene expression and abundance of LapA and MapA through both a transcriptional and post-transcriptional mechanism. We provide further evidence implicating activation of the Gac/Rsm system in FleQ-dependent regulation of biofilm formation. Together, our findings uncover evidence for a dual mechanism of transcriptional and post-transcriptional regulation of the LapA and MapA adhesins.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/fisiologia , Biofilmes , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Transporte/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , GMP Cíclico/metabolismo
19.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577487

RESUMO

The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting non-CF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of gut dysbiosis in CF.

20.
mSphere ; 8(4): e0004623, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37404016

RESUMO

Cystic fibrosis (CF) is a heritable disease that causes altered physiology at mucosal sites; these changes result in chronic infections in the lung, significant gastrointestinal complications as well as dysbiosis of the gut microbiome, although the latter has been less well explored. Here, we describe the longitudinal development of the gut microbiome in a cohort of children with CF (cwCF) from birth through early childhood (0-4 years of age) using 16S rRNA gene amplicon sequencing of stool samples as a surrogate for the gut microbiota. Similar to healthy populations, alpha diversity of the gut microbiome increases significantly with age, but diversity plateaus at ~2 years of age for this CF cohort. Several taxa that have been associated with dysbiosis in CF change with age toward a more healthy-like composition; notable exceptions include Akkermansia, which decreases with age, and Blautia, which increases with age. We also examined the relative abundance and prevalence of nine taxa associated with CF lung disease, several of which persist across early life, highlighting the possibility of the lung being seeded directly from the gut early in life. Finally, we applied the Crohn's Dysbiosis Index to each sample, and found that high Crohn's-associated dysbiosis early in life (<2 years) was associated with significantly lower Bacteroides in samples collected from 2 to 4 years of age. Together, these data comprise an observational study that describes the longitudinal development of the CF-associated gut microbiota and suggest that early markers associated with inflammatory bowel disease may shape the later gut microbiota of cwCF. IMPORTANCE Cystic fibrosis is a heritable disease that disrupts ion transport at mucosal surfaces, causing a buildup of mucus and dysregulation of microbial communities in both the lungs and the intestines. Persons with CF are known to have dysbiotic gut microbial communities, but the development of these communities over time beginning at birth has not been thoroughly studied. Here, we describe an observation study following the development of the gut microbiome of cwCF throughout the first 4 years of life, during the critical window of both gut microbiome and immune development. Our findings indicate the possibility of the gut microbiota as a reservoir of airway pathogens and a surprisingly early indication of a microbiota associated with inflammatory bowel disease.


Assuntos
Fibrose Cística , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Criança , Recém-Nascido , Humanos , Pré-Escolar , Fibrose Cística/complicações , Disbiose/complicações , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA