Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20222022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961013

RESUMO

Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.


Assuntos
Genômica , Proteínas , Sequência de Bases , Biologia Computacional , Genoma , Anotação de Sequência Molecular
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155108

RESUMO

TET/JBP (ten-eleven translocation/base J binding protein) enzymes are iron(II)- and 2-oxo-glutarate-dependent dioxygenases that are found in all kingdoms of life and oxidize 5-methylpyrimidines on the polynucleotide level. Despite their prevalence, few examples have been biochemically characterized. Among those studied are the metazoan TET enzymes that oxidize 5-methylcytosine in DNA to hydroxy, formyl, and carboxy forms and the euglenozoa JBP dioxygenases that oxidize thymine in the first step of base J biosynthesis. Both enzymes have roles in epigenetic regulation. It has been hypothesized that all TET/JBPs have their ancestral origins in bacteriophages, but only eukaryotic orthologs have been described. Here we demonstrate the 5mC-dioxygenase activity of several phage TETs encoded within viral metagenomes. The clustering of these TETs in a phylogenetic tree correlates with the sequence specificity of their genomically cooccurring cytosine C5-methyltransferases, which install the methyl groups upon which TETs operate. The phage TETs favor Gp5mC dinucleotides over the 5mCpG sites targeted by the eukaryotic TETs and are found within gene clusters specifying complex cytosine modifications that may be important for DNA packaging and evasion of host restriction.


Assuntos
5-Metilcitosina/metabolismo , Bacteriófagos/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Metilação de DNA , Dioxigenases , Hidroxilação , Metagenômica , Motivos de Nucleotídeos/genética , Oxirredução , Filogenia
3.
Biochem Soc Trans ; 49(3): 1189-1203, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34100892

RESUMO

Phosphoglycosyl transferases (PGTs) play a pivotal role at the inception of complex glycoconjugate biosynthesis pathways across all domains of life. PGTs promote the first membrane-committed step in the en bloc biosynthetic strategy by catalyzing the transfer of a phospho-sugar from a nucleoside diphospho-sugar to a membrane-resident polyprenol phosphate. Studies on the PGTs have been hampered because they are integral membrane proteins, and often prove to be recalcitrant to expression, purification and analysis. However, in recent years exciting new information has been derived on the structures and the mechanisms of PGTs, revealing the existence of two unique superfamilies of PGT enzymes that enact catalysis at the membrane interface. Genome neighborhood analysis shows that these superfamilies, the polytopic PGT (polyPGT) and monotopic PGT (monoPGT), may initiate different pathways within the same organism. Moreover, the same fundamental two-substrate reaction is enacted through two different chemical mechanisms with distinct modes of catalysis. This review highlights the structural and mechanistic divergence between the PGT enzyme superfamilies and how this is reflected in differences in regulation in their varied glycoconjugate biosynthesis pathways.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Glicoconjugados/química , Glicosiltransferases/química , Proteínas de Membrana/química , Proteínas de Bactérias/metabolismo , Biocatálise , Configuração de Carboidratos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Glicoconjugados/biossíntese , Glicosiltransferases/metabolismo , Cinética , Proteínas de Membrana/metabolismo , Modelos Químicos , Conformação Proteica , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472976

RESUMO

The monotopic phosphoglycosyl transferase (monoPGT) superfamily comprises over 38,000 nonredundant sequences represented in bacterial and archaeal domains of life. Members of the superfamily catalyze the first membrane-committed step in en bloc oligosaccharide biosynthetic pathways, transferring a phosphosugar from a soluble nucleoside diphosphosugar to a membrane-resident polyprenol phosphate. The singularity of the monoPGT fold and its employment in the pivotal first membrane-committed step allows confident assignment of both protein and corresponding pathway. The diversity of the family is revealed by the generation and analysis of a sequence similarity network for the superfamily, with fusion of monoPGTs with other pathway members being the most frequent and extensive elaboration. Three common fusions were identified: sugar-modifying enzymes, glycosyl transferases, and regulatory domains. Additionally, unexpected fusions of the monoPGT with members of the polytopic PGT superfamily were discovered, implying a possible evolutionary link through the shared polyprenol phosphate substrate. Notably, a phylogenetic reconstruction of the monoPGT superfamily shows a radial burst of functionalization, with a minority of members comprising only the minimal PGT catalytic domain. The commonality and identity of the fusion partners in the monoPGT superfamily is consistent with advantageous colocalization of pathway members at membrane interfaces.


Assuntos
Proteínas de Bactérias/química , Glicoconjugados/química , Glicosiltransferases/química , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Polissacarídeos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Citoplasma/enzimologia , Citoplasma/genética , Evolução Molecular , Expressão Gênica , Redes Reguladoras de Genes , Glicoconjugados/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Redes e Vias Metabólicas/genética , Modelos Moleculares , Periplasma/enzimologia , Periplasma/genética , Filogenia , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Biochemistry ; 59(35): 3247-3257, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786412

RESUMO

Trehalose-6-phosphate phosphatase (T6PP) catalyzes the dephosphorylation of trehalose 6-phosphate (T6P) to the disaccharide trehalose. The enzyme is not present in mammals but is essential to the viability of multiple lower organisms as trehalose is a critical metabolite, and T6P accumulation is toxic. Hence, T6PP is a target for therapeutics of human pathologies caused by bacteria, fungi, and parasitic nematodes. Here, we report the X-ray crystal structures of Salmonella typhimurium T6PP (StT6PP) in its apo form and in complex with the cofactor Mg2+ and the substrate analogue trehalose 6-sulfate (T6S), the product trehalose, or the competitive inhibitor 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (OGS). OGS replaces the substrate phosphoryl group with a sulfate group and the glucosyl ring distal to the sulfate group with an octylphenyl moiety. The structures of these substrate-analogue and product complexes with T6PP show that specificity is conferred via hydrogen bonds to the glucosyl group proximal to the phosphoryl moiety through Glu123, Lys125, and Glu167, conserved in T6PPs from multiple species. The structure of the first-generation inhibitor OGS shows that it retains the substrate-binding interactions observed for the sulfate group and the proximal glucosyl ring. The OGS octylphenyl moiety binds in a unique manner, indicating that this subsite can tolerate various chemotypes. Together, these findings show that these conserved interactions at the proximal glucosyl ring binding site could provide the basis for the development of broad-spectrum therapeutics, whereas variable interactions at the divergent distal subsite could present an opportunity for the design of potent organism-specific therapeutics.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Salmonella typhimurium/enzimologia , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Ligação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Especificidade por Substrato , Fosfatos Açúcares/química , Trealose/química , Trealose/metabolismo
6.
J Am Chem Soc ; 142(5): 2145-2149, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31923358

RESUMO

We report the application of lanthanide-binding tags (LBTs) for two- and three-dimensional X-ray imaging of individual proteins in cells with a sub-15 nm beam. The method combines encoded LBTs, which are tags of minimal size (ca. 15-20 amino acids) affording high-affinity lanthanide ion binding, and X-ray fluorescence microscopy (XFM). This approach enables visualization of LBT-tagged proteins while simultaneously measuring the elemental distribution in cells at a spatial resolution necessary for visualizing cell membranes and eukaryotic subcellular organelles.


Assuntos
Imageamento Tridimensional/métodos , Elementos da Série dos Lantanídeos/metabolismo , Proteínas/química , Espectrometria por Raios X/métodos , Sequência de Aminoácidos , Ligação Proteica
7.
Sci Rep ; 8(1): 13415, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194316

RESUMO

X-ray Fluorescence (XRF) microscopy is a growing approach for imaging the trace element concentration, distribution, and speciation in biological cells at the nanoscale. Moreover, three-dimensional nanotomography provides the added advantage of imaging subcellular structure and chemical identity in three dimensions without the need for staining or sectioning of cells. To date, technical challenges in X-ray optics, sample preparation, and detection sensitivity have limited the use of XRF nanotomography in this area. Here, XRF nanotomography was used to image the elemental distribution in individual E. coli bacterial cells using a sub-15 nm beam at the Hard X-ray Nanoprobe beamline (HXN, 3-ID) at NSLS-II. These measurements were simultaneously combined with ptychography to image structural components of the cells. The cells were embedded in small (3-20 µm) sodium chloride crystals, which provided a non-aqueous matrix to retain the three-dimensional structure of the E. coli while collecting data at room temperature. Results showed a generally uniform distribution of calcium in the cells, but an inhomogeneous zinc distribution, most notably with concentrated regions of zinc at the polar ends of the cells. This work demonstrates that simultaneous two-dimensional ptychography and XRF nanotomography can be performed with a sub-15 nm beam size on unfrozen biological cells to co-localize elemental distribution and nanostructure simultaneously.


Assuntos
Escherichia coli/ultraestrutura , Tomografia por Raios X/métodos , Tomografia por Raios X/instrumentação
8.
Methods Enzymol ; 607: 157-184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30149857

RESUMO

Phosphotransferases catalyze reactions on chemically diverse molecules in organisms from all domains of life. The haloalkanoate dehalogenase superfamily (HADSF) is a model system for phosphoryl transfer enzymes as members catalyze phosphoester hydrolase, phosphonate hydrolase, and phosphomutase reactions on sugars, lipids, nucleotides, and peptides. Because these reactions are fundamental to essential metabolic transformations, understanding the mechanism and determinants of substrate specificity in the HADSF is critical. Structure/function relationships in the superfamily have also been leveraged in the development of methodologies for the assignment of enzyme function. Enzyme complexes with substrate, product, and analogs of the ground state or intermediate/transition state can be studied via high-resolution macromolecular crystallography to provide insight to the relative location of residues and ligands, as well as associated enzyme conformational states. This knowledge can aid in inhibitor design for phosphohydrolase reactions and target-specific therapeutics. Here we describe experimental approaches to capture liganded X-ray crystallographic structures of HADSF members. A number of these methods can be employed generally, including other families of phosphohydrolases and enzymes catalyzing phosphoryl transfer.


Assuntos
Hidrolases/química , Monoéster Fosfórico Hidrolases/química , Domínio Catalítico , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Hidrolases/metabolismo , Ligantes , Monoéster Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA