Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38651221

RESUMO

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Assuntos
Ananas , Genoma de Planta , Proteínas de Plantas , Proteogenômica , Espectrometria de Massas em Tandem , Ananas/genética , Ananas/química , Proteogenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromatografia Líquida , Proteoma/genética , Proteoma/análise , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/química , Peptídeos/genética , Peptídeos/análise , Peptídeos/química
2.
STAR Protoc ; 4(4): 102741, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039136

RESUMO

Basement membranes are specialized extracellular matrices formed by highly insoluble structural proteins and extracellular matrix (ECM)-bound components that provide structural and signaling support to tissues and are dynamic during development. Here, we present a mass spectrometry-based label-free quantitative proteomics protocol to investigate basement membranes and define their composition using samples from human kidney organoids and mouse fetal kidneys. This protocol facilitates the study of basement membrane and other ECM components during development to improve our understanding of matrix regulation and function. For complete details on the use and execution of this protocol, please refer to Morais et al.1.


Assuntos
Matriz Extracelular , Proteômica , Humanos , Animais , Camundongos , Membrana Basal , Proteômica/métodos , Matriz Extracelular/metabolismo , Espectrometria de Massas , Rim
3.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200023

RESUMO

Endosomal Sorting Complex Required for Transport (ESCRT) proteins can be transiently recruited to the plasma membrane for membrane repair and formation of extracellular vesicles. Here, we discovered micrometer-sized worm-shaped ESCRT structures that stably persist for multiple hours at the plasma membrane of macrophages, dendritic cells, and fibroblasts. These structures surround clusters of integrins and known cargoes of extracellular vesicles. The ESCRT structures are tightly connected to the cellular support and are left behind by the cells together with surrounding patches of membrane. The phospholipid composition is altered at the position of the ESCRT structures, and the actin cytoskeleton is locally degraded, which are hallmarks of membrane damage and extracellular vesicle formation. Disruption of actin polymerization increased the formation of the ESCRT structures and cell adhesion. The ESCRT structures were also present at plasma membrane contact sites with membrane-disrupting silica crystals. We propose that the ESCRT proteins are recruited to adhesion-induced membrane tears to induce extracellular shedding of the damaged membrane.


Assuntos
Actinas , Complexos Endossomais de Distribuição Requeridos para Transporte , Integrinas , Actinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Integrinas/genética , Integrinas/metabolismo , Transporte Proteico , Fosfolipídeos/química , Membrana Celular , Macrófagos , Células Dendríticas , Fibroblastos , Humanos , Conformação Proteica
4.
Aging Cell ; 20(5): e13355, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33830638

RESUMO

Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6ß4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.


Assuntos
Mapeamento de Peptídeos/métodos , Proteômica/métodos , Envelhecimento da Pele , Pele/química , Idoso , Biomarcadores/química , Cromatografia Líquida , Matriz Extracelular/química , Hemidesmossomos/química , Humanos , Queratinas/metabolismo , Pessoa de Meia-Idade , Peptídeos/análise , Biossíntese de Proteínas , Proteoma/química , Envelhecimento da Pele/efeitos da radiação , Software , Espectrometria de Massas em Tandem
5.
Clin Proteomics ; 17: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565759

RESUMO

BACKGROUND: Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. METHODS: Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. RESULTS: This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. CONCLUSION: Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.

6.
Matrix Biol Plus ; 5: 100027, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33543016

RESUMO

In contrast to the dynamic intracellular environment, structural extracellular matrix (ECM) proteins with half-lives measured in decades, are susceptible to accumulating damage. Whilst conventional approaches such as histology, immunohistochemistry and mass spectrometry are able to identify age- and disease-related changes in protein abundance or distribution, these techniques are poorly suited to characterising molecular damage. We have previously shown that mass spectrometry can detect tissue-specific differences in the proteolytic susceptibility of protein regions within fibrillin-1 and collagen VI alpha-3. Here, we present a novel proteomic approach to detect damage-induced "peptide fingerprints" within complex multi-component ECM assemblies (fibrillin and collagen VI microfibrils) following their exposure to ultraviolet radiation (UVR) by broadband UVB or solar simulated radiation (SSR). These assemblies were chosen because, in chronically photoaged skin, fibrillin and collagen VI microfibril architectures are differentially susceptible to UVR. In this study, atomic force microscopy revealed that fibrillin microfibril ultrastructure was significantly altered by UVR exposure whereas the ultrastructure of collagen VI microfibrils was resistant. UVR-induced molecular damage was further characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Peptide mapping revealed that UVR exposure increased regional proteolytic susceptibility within the protein structures of fibrillin-1 and collagen VI alpha-3. This allowed the identification of UVR-induced molecular changes within these two key ECM assemblies. Additionally, similar changes were observed within protein regions of co-purifying, microfibril-associated receptors integrins αv and ß1. This study demonstrates that LC-MS/MS mapping of peptides enables the characterisation of molecular post-translational damage (via direct irradiation and radiation-induced oxidative mechanisms) within a complex in vitro model system. This peptide fingerprinting approach reliably allows both the identification of UVR-induced molecular damage in and between proteins and the identification of specific protein domains with increased proteolytic susceptibility as a result of photo-denaturation. This has the potential to serve as a sensitive method of identifying accumulated molecular damage in vivo using conventional mass spectrometry data-sets.

7.
Sci Signal ; 11(540)2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042130

RESUMO

Toll-like receptor (TLR) signaling regulates macrophage activation and effector cytokine propagation in the constrained environment of a tissue. In macrophage populations, TLR4 stimulates the dose-dependent transcription of nuclear factor κB (NF-κB) target genes. However, using single-RNA counting, we found that individual cells exhibited a wide range (three orders of magnitude) of expression of the gene encoding the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The TLR4-induced TNFA transcriptional response correlated with the extent of NF-κB signaling in the cells and their size. We compared the rates of TNF-α production and uptake in macrophages and mouse embryonic fibroblasts and generated a mathematical model to explore the heterogeneity in the response of macrophages to TLR4 stimulation and the propagation of the TNF-α signal in the tissue. The model predicts that the local propagation of the TLR4-dependent TNF-α response and cellular NF-κB signaling are limited to small distances of a few cell diameters between neighboring tissue-resident macrophages. In our predictive model, TNF-α propagation was constrained by competitive uptake of TNF-α from the environment, rather than by heterogeneous production of the cytokine. We propose that the highly constrained architecture of tissues enables effective localized propagation of inflammatory cues while avoiding out-of-context responses at longer distances.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos , Macrófagos/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Células RAW 264.7 , Análise de Célula Única , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/imunologia
8.
Sci Rep ; 8(1): 3876, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497096

RESUMO

Staphylococcus aureus can develop a small colony variant (SCV) phenotype in response to sub-lethal exposure to the biocide triclosan. In the current study, whole genome sequencing was performed and changes in virulence were investigated in five Staphylococcus aureus strains following repeated exposure to triclosan. Following exposure, 4/5 formed SCV and exhibited point mutations in the triclosan target gene fabI with 2/4 SCVs showing mutations in both fabI and fabD. The SCV phenotype was in all cases immediately reversed by nutritional supplementation with fatty acids or by repeated growth in the absence of triclosan, although fabI mutations persisted in 3/4 reverted SCVs. Virulence, determined using keratinocyte invasion and Galleria mellonella pathogenicity assays was significantly (p < 0.05) attenuated in 3/4 SCVs and in the non-SCV triclosan-adapted bacterium. Proteomic analysis revealed elevated FabI in 2/3 SCV and down-regulation in a protein associated with virulence in 1/3 SCV. In summary, attenuated keratinocyte invasion and larval virulence in triclosan-induced SCVs was associated with decreases in growth rate and virulence factor expression. Mutation occurred in fabI, which encodes the main triclosan target in all SCVs and the phenotype was reversed by fatty acid supplementation, demonstrating an association between fatty acid metabolism and triclosan-induced SCV.


Assuntos
Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulência/genética , Anti-Infecciosos Locais/metabolismo , Proteínas de Bactérias/genética , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Testes de Sensibilidade Microbiana , Fenótipo , Proteômica , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Triclosan/metabolismo , Triclosan/farmacologia , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo , Sequenciamento Completo do Genoma/métodos
9.
J Biol Chem ; 293(14): 5117-5133, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453284

RESUMO

Elastic fibers comprising fibrillin microfibrils and elastin are present in many tissues, including the skin, lungs, and arteries, where they confer elasticity and resilience. Although fibrillin microfibrils play distinct and tissue-specific functional roles, it is unclear whether their ultrastructure and composition differ between elastin-rich (skin) and elastin-poor (ciliary body and zonule) organs or after in vitro synthesis by cultured cells. Here, we used atomic force microscopy, which revealed that the bead morphology of fibrillin microfibrils isolated from the human eye differs from those isolated from the skin. Using newly developed pre-MS preparation methods and LC-MS/MS, we detected tissue-specific regions of the fibrillin-1 primary structure that were differentially susceptible to proteolytic extraction. Comparing tissue- and culture-derived microfibrils, we found that dermis- and dermal fibroblast-derived fibrillin microfibrils differ in both bead morphology and periodicity and also exhibit regional differences in fibrillin-1 proteolytic susceptibility. In contrast, collagen VI microfibrils from the same dermal or fibroblast samples were invariant in ultrastructure (periodicity) and protease susceptibility. Finally, we observed that skin- and eye-derived microfibril suspensions were enriched in elastic fiber- and basement membrane-associated proteins, respectively. LC-MS/MS also identified proteins (such as calreticulin and protein-disulfide isomerase) that are potentially fundamental to fibrillin microfibril biology, regardless of their tissue source. Fibrillin microfibrils synthesized in cell culture lacked some of these key proteins (MFAP2 and -4 and fibrillin-2). These results showcase the structural diversity of these key extracellular matrix assemblies, which may relate to their distinct roles in the tissues where they reside.


Assuntos
Fibrilina-1/análise , Microfibrilas/química , Idoso , Células Cultivadas , Colágeno Tipo VI/análise , Olho/química , Feminino , Fibrilina-1/ultraestrutura , Humanos , Masculino , Microfibrilas/ultraestrutura , Microscopia de Força Atômica , Conformação Proteica , Pele/química
10.
Front Plant Sci ; 8: 1239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775726

RESUMO

Leaves of Arabidopsis thaliana transferred from low to high light increase their capacity for photosynthesis, a process of dynamic acclimation. A mutant, gpt2, lacking a chloroplast glucose-6-phosphate/phosphate translocator, is deficient in its ability to acclimate to increased light. Here, we have used a label-free proteomics approach, to perform relative quantitation of 1993 proteins from Arabidopsis wild type and gpt2 leaves exposed to increased light. Data are available via ProteomeXchange with identifier PXD006598. Acclimation to light is shown to involve increases in electron transport and carbon metabolism but no change in the abundance of photosynthetic reaction centers. The gpt2 mutant shows a similar increase in total protein content to wild type but differences in the extent of change of certain proteins, including in the relative abundance of the cytochrome b6f complex and plastocyanin, the thylakoid ATPase and selected Benson-Calvin cycle enzymes. Changes in leaf metabolite content as plants acclimate can be explained by changes in the abundance of enzymes involved in metabolism, which were reduced in gpt2 in some cases. Plants of gpt2 invest more in stress-related proteins, suggesting that their reduced ability to acclimate photosynthetic capacity results in increased stress.

11.
Breast Cancer Res ; 18(1): 5, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26747277

RESUMO

BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54-66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson's trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 µm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population.


Assuntos
Neoplasias da Mama/genética , Colágeno/metabolismo , Glândulas Mamárias Humanas/anormalidades , Mamografia/métodos , Proteômica , Idoso , Animais , Densidade da Mama , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Colágeno/ultraestrutura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Microscopia de Força Atômica , Pessoa de Meia-Idade , Ratos , Fatores de Risco
12.
J Am Soc Nephrol ; 26(2): 302-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25288605

RESUMO

Phospholipase A2 receptor 1 (PLA2R) is a target autoantigen in 70% of patients with idiopathic membranous nephropathy. We describe the location of a major epitope in the N-terminal cysteine-rich ricin domain of PLA2R that is recognized by 90% of human anti-PLA2R autoantibodies. The epitope was sensitive to reduction and SDS denaturation in the isolated ricin domain and the larger fragment containing the ricin, fibronectin type II, first and second C-type lectin domains (CTLD). However, in nondenaturing conditions the epitope was protected against reduction in larger fragments, including the full-length extracellular region of PLA2R. To determine the composition of the epitope, we isolated immunoreactive tryptic fragments by Western blotting and analyzed them by mass spectrometry. The identified peptides were tested as inhibitors of autoantibody binding to PLA2R by surface plasmon resonance. Two peptides from the ricin domain showed strong inhibition, with a longer sequence covering both peptides (31-mer) producing 85% inhibition of autoantibody binding to PLA2R. Anti-PLA2R antibody directly bound this 31-mer peptide under nondenaturing conditions and binding was sensitive to reduction. Analysis of PLA2R and the PLA2R-anti-PLA2R complex using electron microscopy and homology-based representations allowed us to generate a structural model of this major epitope and its antibody binding site, which is independent of pH-induced conformational change in PLA2R. Identification of this major PLA2R epitope will enable further therapeutic advances for patients with idiopathic membranous nephropathy, including antibody inhibition therapy and immunoadsorption of circulating autoantibodies.


Assuntos
Autoanticorpos/imunologia , Epitopos/imunologia , Glomerulonefrite Membranosa/imunologia , Receptores da Fosfolipase A2/imunologia , Sequência de Aminoácidos , Autoanticorpos/sangue , Epitopos/química , Fibronectinas/imunologia , Glomerulonefrite Membranosa/sangue , Humanos , Concentração de Íons de Hidrogênio , Lectinas Tipo C/imunologia , Dados de Sequência Molecular
13.
Proteomics ; 12(12): 1912-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623287

RESUMO

The development of ion mobility (IM) MS instruments has the capability to provide an added dimension to peptide analysis pipelines in proteomics, but, as yet, there are few software tools available for analysing such data. IM can be used to provide additional separation of parent ions or product ions following fragmentation. In this work, we have created a set of software tools that are capable of converting three dimensional IM data generated from analysis of fragment ions into a variety of formats used in proteomics. We demonstrate that IM can be used to calculate the charge state of a fragment ion, demonstrating the potential to improve peptide identification by excluding non-informative ions from a database search. We also provide preliminary evidence of structural differences between b and y ions for certain peptide sequences but not others. All software tools and data sets are made available in the public domain at http://code.google.com/p/ion-mobility-ms-tools/.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Peptídeos/química , Software , Sequência de Aminoácidos , Humanos , Modelos Lineares , Dados de Sequência Molecular , Peptídeos/análise
14.
PLoS One ; 7(12): e52418, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300666

RESUMO

Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel 'head-to-head' arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of timescales and extent of structural change orientates the histidine kinase domain to elicit the desired light-activated biological response.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Luz , Fitocromo/química , Fitocromo/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos da radiação , Synechocystis/efeitos da radiação , Absorção/efeitos da radiação , Cor , Espectroscopia de Ressonância de Spin Eletrônica , Isomerismo , Cinética , Movimento/efeitos da radiação , Fotorreceptores Microbianos , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Conformação Proteica/efeitos da radiação , Solventes/química , Synechocystis/citologia , Synechocystis/metabolismo , Fatores de Tempo
15.
Proteomics ; 11(15): 2957-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21710569

RESUMO

In this paper, we discuss the challenge of large-scale quantification of a proteome, referring to our programme that aims to define the absolute quantity, in copies per cell, of at least 4000 proteins in the yeast Saccharomyces cerevisiae. We have based our strategy on the well-established method of stable isotope dilution, generating isotopically labelled peptides using QconCAT technology, in which artificial genes, encoding concatenations of tryptic fragments as surrogate quantification standards, are designed, synthesised de novo and expressed in bacteria using stable isotopically enriched media. A known quantity of QconCAT is then co-digested with analyte proteins and the heavy:light isotopologues are analysed by mass spectrometry to yield absolute quantification. This workflow brings issues of optimal selection of quantotypic peptides, their assembly into QconCATs, expression, purification and deployment.


Assuntos
Marcação por Isótopo/métodos , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Biologia de Sistemas/métodos , Escherichia coli/metabolismo , Espectrometria de Massas , Fragmentos de Peptídeos/análise
16.
Malar J ; 9: 286, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20955557

RESUMO

BACKGROUND: Plasmodium species are difficult to study using proteomic technology because they contain large amounts of haemoglobin-derived products (HDP), generated by parasite breakdown of host haemoglobin. HDP are known to interfere with isoelectric focussing, a cornerstone of fractionation strategies for the identification of proteins by mass spectrometry. In addition to the challenge presented by this material, as in most proteomes, there exists in this parasite a considerable dynamic range between proteins of high and low abundance. The enzymes of the folate pathway, a proven and widely used drug target, are included in the latter class. METHODS: This report describes a work-flow utilizing a parasite-specific extraction protocol that minimizes release of HDP into the lysate, followed by in-solution based OFFGEL™ electrophoresis at the protein level, trypsin digestion and mass spectrometric analysis. RESULTS: It is demonstrated that, by removing HDP from parasite lysates, OFFGEL™-mediated protein separation is able to deliver reduced complexity protein fractions. Importantly, proteins with similar and predictable physical properties are sharply focussed within such fractions. CONCLUSIONS: By following this novel workflow, data have been obtained which allow the unequivocal experimental identification by mass spectrometry of four of the six proteins involved in folate biosynthesis and recycling.


Assuntos
Vias Biossintéticas , Enzimas/isolamento & purificação , Ácido Fólico/biossíntese , Focalização Isoelétrica/métodos , Espectrometria de Massas/métodos , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/isolamento & purificação , Humanos , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA