Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 118(1): 44-56, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31787208

RESUMO

Efficient engagement with the envelope glycoprotein membrane-proximal external region (MPER) results in robust blocking of viral infection by a class of broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV). Developing an accommodation surface that engages with the viral lipid envelope appears to correlate with the neutralizing potency displayed by these bnAbs. The nature of the interactions established between the antibody and the lipid is nonetheless a matter of debate, with some authors arguing that anti-MPER specificity arises only under pathological conditions in autoantibodies endowed with stereospecific binding sites for phospholipids. However, bnAb-lipid interactions are often studied in systems that do not fully preserve the biophysical properties of lipid bilayers, and therefore, questions on binding specificity and the effect of collective membrane properties on the interaction are still open. Here, to evaluate the specificity of lipid interactions of an anti-MPER bnAb (4E10) in an intact membrane context, we determine quantitatively its association with lipid bilayers by means of scanning fluorescence correlation spectroscopy and all-atom molecular dynamic simulations. Our data support that 4E10 establishes electrostatic and hydrophobic interactions with the viral membrane surface and that the collective physical properties of the lipid bilayer influence 4E10 dynamics therein. We conclude that establishment of peripheral, nonspecific electrostatic interactions with the viral membrane through accommodation surfaces may assist high-affinity binding of HIV-1 MPER epitope at membrane interfaces. These findings highlight the importance of considering antibody-lipid interactions in the design of antibody-based anti-HIV strategies.


Assuntos
Anticorpos Antivirais/imunologia , HIV-1/imunologia , Envelope Viral/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Membrana Celular/metabolismo , Membrana Celular/virologia , HIV-1/fisiologia , Modelos Moleculares , Conformação Proteica
2.
Biophys J ; 113(6): 1301-1310, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28797705

RESUMO

Membrane fusion induced by the envelope glycoprotein enables the intracellular replication of HIV-1; hence, this process constitutes a major target for antiretroviral compounds. It has been proposed that peptides having propensity to interact with membrane interfaces might exert broad antiviral activity against enveloped viruses. To test this hypothesis, in this contribution we have analyzed the antiviral effects of peptides derived from the membrane-proximal external region and the transmembrane domain of the envelope glycoprotein subunit gp41, which display different degrees of interfacial hydrophobicity. Our data support the virucidal activity of a region that combines hydrophobic-at-interface membrane-proximal external region aromatics with hydrophobic residues of the transmembrane domain, and contains the absolutely conserved 679LWYIK/R683 sequence, proposed to embody a "cholesterol recognition/interaction amino acid consensus" motif. We further sought to correlate the antiviral activity of these peptides and their effects on membranes that mimic lipid composition and biophysical properties of the viral envelope. The data revealed that peptides endowed with virucidal activity were membrane active and induced permeabilization and fusion of virus-like lipid vesicles. In addition, they modulated lipid packing and miscibility of laterally segregated liquid domains, two properties that depend on the high cholesterol content of the viral membrane. Thus, the overall experimental evidence is consistent with a pattern of HIV inhibition that involves direct alteration of the physical chemistry of the virus membrane. Furthermore, the sequence-dependent effects observed might guide the development of new virucidal peptides.


Assuntos
Proteína gp41 do Envelope de HIV/química , Lipossomas Unilamelares/química , Colesterol/química , Colesterol/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA