Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 186: 114547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408634

RESUMO

People are exposed to high concentrations of antibacterial agent cetylpyridinium chloride (CPC) via food and personal care products, despite little published information regarding CPC effects on eukaryotes. Here, we show that low-micromolar CPC exposure, which does not cause cell death, inhibits mitochondrial ATP production in primary human keratinocytes, mouse NIH-3T3 fibroblasts, and rat RBL-2H3 immune mast cells. ATP inhibition via CPC (EC50 1.7 µM) is nearly as potent as that caused by canonical mitotoxicant CCCP (EC50 1.2 µM). CPC inhibition of oxygen consumption rate (OCR) tracks with that of ATP: OCR is halved due to 1.75 µM CPC in RBL-2H3 cells and 1.25 µM in primary human keratinocytes. Mitochondrial [Ca2+] changes can cause mitochondrial dysfunction. Here we show that CPC causes mitochondrial Ca2+ efflux from mast cells via an ATP-inhibition mechanism. Using super-resolution microscopy (fluorescence photoactivation localization) in live cells, we have discovered that CPC causes mitochondrial nanostructural defects in live cells within 60 min, including the formation of spherical structures with donut-like cross section. This work reveals CPC as a mitotoxicant despite widespread use, highlighting the importance of further research into its toxicological safety.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Camundongos , Humanos , Ratos , Animais , Cetilpiridínio/química , Cetilpiridínio/farmacologia , Roedores , Anti-Infecciosos/farmacologia , Mitocôndrias , Trifosfato de Adenosina
2.
Food Chem Toxicol ; 179: 113980, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549805

RESUMO

Cetylpyridinium chloride (CPC) is an antimicrobial used in numerous personal care and janitorial products and food for human consumption at millimolar concentrations. Minimal information exists on the eukaryotic toxicology of CPC. We have investigated the effects of CPC on signal transduction of the immune cell type mast cells. Here, we show that CPC inhibits the mast cell function degranulation with antigen dose-dependence and at non-cytotoxic doses ∼1000-fold lower than concentrations in consumer products. Previously we showed that CPC disrupts phosphatidylinositol 4,5-bisphosphate, a signaling lipid critical for store-operated Ca2+ entry (SOCE), which mediates degranulation. Our results indicate that CPC inhibits antigen-stimulated SOCE: CPC restricts Ca2+ efflux from endoplasmic reticulum, reduces Ca2+ uptake into mitochondria, and dampens Ca2+ flow through plasma membrane channels. While inhibition of Ca2+ channel function can be caused by alteration of plasma membrane potential (PMP) and cytosolic pH, CPC does not affect PMP or pH. Inhibition of SOCE is known to depress microtubule polymerization, and here we show that CPC indeed dose-dependently shuts down formation of microtubule tracks. In vitro data reveal that CPC inhibition of microtubules is not due to direct CPC interference with tubulin. In summary, CPC is a signaling toxicant that targets Ca2+ mobilization.


Assuntos
Cetilpiridínio , Mastócitos , Humanos , Cetilpiridínio/metabolismo , Cetilpiridínio/farmacologia , Cálcio/metabolismo , Transdução de Sinais , Preparações Farmacêuticas/metabolismo , Sinalização do Cálcio
3.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292883

RESUMO

Cetylpyridinium chloride (CPC) is an antimicrobial used in numerous personal care and janitorial products and food for human consumption at millimolar concentrations. Minimal information exists on the eukaryotic toxicology of CPC. We have investigated the effects of CPC on signal transduction of the immune cell type mast cells. Here, we show that CPC inhibits the mast cell function degranulation with antigen dose-dependence and at non-cytotoxic doses ∼1000-fold lower than concentrations in consumer products. Previously we showed that CPC disrupts phosphatidylinositol 4,5-bisphosphate, a signaling lipid critical for store-operated Ca 2+ entry (SOCE), which mediates degranulation. Our results indicate that CPC inhibits antigen-stimulated SOCE: CPC restricts Ca 2+ efflux from endoplasmic reticulum, reduces Ca 2+ uptake into mitochondria, and dampens Ca 2+ flow through plasma membrane channels. While inhibition of Ca 2+ channel function can be caused by alteration of plasma membrane potential (PMP) and cytosolic pH, CPC does not affect PMP or pH. Inhibition of SOCE is known to depress microtubule polymerization, and here we show that CPC indeed dose-dependently shuts down formation of microtubule tracks. In vitro data reveal that CPC inhibition of microtubules is not due to direct CPC interference with tubulin. In summary, CPC is a signaling toxicant that targets Ca 2+ mobilization.

4.
Viruses ; 14(11)2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423118

RESUMO

The fully assembled influenza A virus (IAV) has on its surface the highest density of a single membrane protein found in nature-the glycoprotein hemagglutinin (HA) that mediates viral binding, entry, and assembly. HA clusters at the plasma membrane of infected cells, and the HA density (number of molecules per unit area) of these clusters correlates with the infectivity of the virus. Dense HA clusters are considered to mark the assembly site and ultimately lead to the budding of infectious IAV. The mechanism of spontaneous HA clustering, which occurs with or without other viral components, has not been elucidated. Using super-resolution fluorescence photoactivation localization microscopy (FPALM), we have previously shown that these HA clusters are interdependent on phosphatidylinositol 4,5-biphosphate (PIP2). Here, we show that the IAV matrix protein M1 co-clusters with PIP2, visualized using the pleckstrin homology domain. We find that cetylpyridinium chloride (CPC), which is a positively charged quaternary ammonium compound known for its antibacterial and antiviral properties at millimolar concentrations, disrupts M1 clustering and M1-PIP2 co-clustering at micromolar concentrations well below the critical micelle concentration (CMC). CPC also disrupts the co-clustering of M1 with HA at the plasma membrane, suggesting the role of host cell PIP2 clusters as scaffolds for gathering and concentrating M1 and HA to achieve their unusually high cluster densities in the IAV envelope.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Hemaglutininas/metabolismo , Fosfatidilinositóis/metabolismo , Influenza Humana/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Montagem de Vírus , Membrana Celular/metabolismo , Vírus da Influenza A/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-36051945

RESUMO

Localization microscopy circumvents the diffraction limit by identifying and measuring the positions of numerous subsets of individual fluorescent molecules, ultimately producing an image whose resolution depends on the uncertainty and density of localization, and whose capabilities are compatible with imaging living specimens. Spectral resolution can be improved by incorporating a dichroic or dispersive element in the detection path of a localization microscope, which can be useful for separation of multiple probes imaged simultaneously and for detection of changes in emission spectra of fluorophores resulting from changes in their environment. These methodological advances enable new biological applications, which in turn motivate new questions and technical innovations. As examples, we present fixed-cell imaging of the spike protein SARS-CoV2 (S) and its interactions with host cell components. Results show a relationship between S and the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). These findings have ramifications for several existing models of plasma membrane organization.

6.
Toxicol Appl Pharmacol ; 440: 115913, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149080

RESUMO

The COVID-19 pandemic raises significance for a potential influenza therapeutic compound, cetylpyridinium chloride (CPC), which has been extensively used in personal care products as a positively-charged quaternary ammonium antibacterial agent. CPC is currently in clinical trials to assess its effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity. Two published studies have provided mouse and human data indicating that CPC may alleviate influenza infection, and here we show that CPC (0.1 µM, 1 h) reduces zebrafish mortality and viral load following influenza infection. However, CPC mechanisms of action upon viral-host cell interaction are currently unknown. We have utilized super-resolution fluorescence photoactivation localization microscopy to probe the mode of CPC action. Reduction in density of influenza viral protein hemagglutinin (HA) clusters is known to reduce influenza infectivity: here, we show that CPC (at non-cytotoxic doses, 5-10 µM) reduces HA density and number of HA molecules per cluster within the plasma membrane of NIH-3T3 mouse fibroblasts. HA is known to colocalize with the negatively-charged mammalian lipid phosphatidylinositol 4,5-bisphosphate (PIP2); here, we show that nanoscale co-localization of HA with the PIP2-binding Pleckstrin homology (PH) reporter in the plasma membrane is diminished by CPC. CPC also dramatically displaces the PIP2-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) from the plasma membrane of rat RBL-2H3 mast cells; this disruption of PIP2 is correlated with inhibition of mast cell degranulation. Together, these findings offer a PIP2-focused mechanism underlying CPC disruption of influenza and suggest potential pharmacological use of this drug as an influenza therapeutic to reduce global deaths from viral disease.


Assuntos
COVID-19 , Influenza Humana , Animais , Humanos , Camundongos , Ratos , Comunicação Celular , Cetilpiridínio/química , Cetilpiridínio/farmacologia , Imunidade , Mamíferos , Microscopia de Fluorescência , Pandemias , Fosfatidilinositóis , SARS-CoV-2 , Peixe-Zebra
7.
Toxicol Appl Pharmacol ; 405: 115205, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835763

RESUMO

Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits Ca2+ mobilization in human Jurkat T cells. However, the biochemical mechanism behind the Ca2+ dampening has yet to be elucidated. Three-dimensional super-resolution microscopy reveals that TCS induces mitochondrial swelling, in line with and extending the previous finding of TCS inhibition of mitochondrial membrane potential via its proton ionophoric activity. Inhibition of plasma membrane potential (PMP) by the canonical depolarizer gramicidin can inhibit mast cell function. However, use of the genetically encoded voltage indicators (GEVIs) ArcLight (pH-sensitive) and ASAP2 (pH-insensitive), indicates that TCS does not disrupt PMP. In conjunction with data from a plasma membrane-localized, pH-sensitive reporter, these results indicate that TCS, instead, induces cytosolic acidification in mast cells and T cells. Acidification of the cytosol likely inhibits Ca2+ influx by uncoupling the STIM1/ORAI1 interaction that is required for opening of plasma membrane Ca2+ channels. These results provide a mechanistic explanation of TCS disruption of Ca2+ influx and, thus, of immune cell function.


Assuntos
Anti-Infecciosos/toxicidade , Cálcio/metabolismo , Citoplasma/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Triclosan/toxicidade , Canais de Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Citoplasma/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mastócitos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Dilatação Mitocondrial/efeitos dos fármacos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA