Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 164(4): 579-592.e8, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36586540

RESUMO

BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Encefálicas/diagnóstico , Genótipo , Reparo de Erro de Pareamento de DNA/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética
2.
Eur J Haematol ; 110(3): 296-304, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36433728

RESUMO

Long-term disease control in multiple myeloma (MM) is typically an unmet medical need, and most patients experience multiple relapses. Fluorescence in situ hybridization (FISH) is the standard technique to detect chromosomal abnormalities (CAs), which are important to estimate the prognosis of MM and the allocation of risk adapted therapies. In advanced stages, the importance of CAs needs further investigation. From 148 MM patients, two or more paired samples, at least one of which was collected at relapse, were analyzed by FISH. Using targeted next-generation sequencing, we molecularly investigated samples harboring relapse-associated CAs. Sixty-one percent of the patients showed a change in the cytogenetic profile during the disease course, including 10% who acquired high-risk cytogenetics. Amp(1q) (≥4 copies of 1q21), driven by an additional increase in copy number in patients who already had 3 copies of 1q21, was the most common acquired CA with 16% affected patients. Tetraploidy, found in 10% of the samples collected at the last time-point, was unstable over the course of the disease and was associated with TP53 lesions. Our results indicate that cytogenetic progression is common in relapsed patients. The relatively high frequency of amp(1q) suggests an active role for this CA in disease progression.


Assuntos
Adenina Fosforribosiltransferase , Mieloma Múltiplo , Tetraploidia , Humanos , Adenina Fosforribosiltransferase/genética , Aberrações Cromossômicas , Hibridização in Situ Fluorescente , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia , Prognóstico
3.
Biomolecules ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291559

RESUMO

Colorectal cancer (CRC) in adolescents and young adults (AYA) is very rare. Known predisposition syndromes include Lynch syndrome (LS) due to highly penetrant MLH1 and MSH2 alleles, familial adenomatous polyposis (FAP), constitutional mismatch-repair deficiency (CMMRD), and polymerase proofreading-associated polyposis (PPAP). Yet, 60% of AYA-CRC cases remain unexplained. In two teenage siblings with multiple adenomas and CRC, we identified a maternally inherited heterozygous PMS2 exon 12 deletion, NM_000535.7:c.2007-786_2174+493del1447, and a paternally inherited POLD1 variant, NP_002682.2:p.Asp316Asn. Comprehensive molecular tumor analysis revealed ultra-mutation (>100 Mut/Mb) and a large contribution of COSMIC signature SBS20 in both siblings' CRCs, confirming their predisposition to AYA-CRC results from a high propensity for somatic MMR deficiency (MMRd) compounded by a constitutional Pol δ proofreading defect. COSMIC signature SBS20 as well as SBS26 in the index patient's CRC were associated with an early mutation burst, suggesting MMRd was an early event in tumorigenesis. The somatic second hits in PMS2 were through loss of heterozygosity (LOH) in both tumors, suggesting PPd-independent acquisition of MMRd. Taken together, these patients represent the first cases of cancer predisposition due to heterozygous variants in PMS2 and POLD1. Analysis of their CRCs supports that POLD1-mutated tumors acquire hypermutation only with concurrent MMRd.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Adolescente , Humanos , Adulto Jovem , Carcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Síndrome
4.
Genet Med ; 22(12): 2081-2088, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773772

RESUMO

PURPOSE: Biallelic germline mismatch repair (MMR) gene pathogenic variants (PVs) cause constitutional MMR deficiency (CMMRD), a highly penetrant childhood cancer syndrome phenotypically overlapping with neurofibromatosis type 1 (NF1). CMMRD testing in suspected NF1 children without NF1/SPRED1 PVs enables inclusion of CMMRD positives into monitoring programs prior to tumor onset. However, testing is associated with potential harms and the prevalence of CMMRD among these children is unknown. METHODS: Using a simple and scalable microsatellite instability (MSI) assay of non-neoplastic leukocyte DNA to detect CMMRD, we retrospectively screened >700 children suspected of sporadic NF1 but lacking NF1/SPRED1 PVs. RESULTS: For three of seven MSI-positive patients germline MMR gene PVs confirmed the diagnosis of CMMRD. Founder variants NM_000535.5(PMS2):c.736_741delinsTGTGTGTGAAG, prevalent in Europe and North America, and NM_000179.2(MSH6):c.10C>G, affecting 1:400 French Canadians, represented two of five PVs. The prevalence of CMMRD was 3/735 (0.41%, 95% confidence interval [CI]: 0.08-1.19%). CONCLUSION: Our empirical data provide reliable numbers for genetic counseling and confirm previous prevalence estimations, on which Care for CMMRD consortium guidelines are based. These advocate CMMRD testing of preselected patients rather than offering reflex testing to all suspected sporadic NF1 children lacking NF1/SPRED1 PVs. The possibility of founder effects should be considered alongside these testing guidelines.


Assuntos
Neoplasias Colorretais , Neurofibromatose 1 , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Encefálicas , Canadá , Criança , Reparo de Erro de Pareamento de DNA/genética , Europa (Continente) , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Síndromes Neoplásicas Hereditárias , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/epidemiologia , Neurofibromatose 1/genética , América do Norte , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA