Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 10(6): e0129878, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26115365

RESUMO

The increase in insecticide resistant mosquito populations necessitates the exploration of novel vector control intervention measures. Push-pull strategies for insect control have been successful when used in integrated crop pest management. Through the combinatory use of deterring and attracting stimuli, the abundance of insect pests can be changed in a given area. A push-pull strategy might also significantly reduce human-vector contacts and augment existing mosquito control strategies, e.g. through the combination of an attractive trapping system and a potent spatial repellent. Our approach includes the BG-Sentinel (BGS) trap in combination with catnip oil (Nepeta cataria), a known spatial repellent for Aedes aegypti. To impart a deterrent effect on mosquitoes at a distance, a homogenous and continuous dispersal of volatile repellent compounds is crucial. We have developed a repellent dispensing system that is easy to use and provides a homogenous dispersal of repellent in an air curtain. The use of five 9 V fans and custom-made repellent sachets containing 10% catnip essential oil created a repellent loaded air curtain that provided coverage of an area of 2 m2 (1.2 x 1.65 m). Air was sampled at four different heights in the curtain and analysed via thermal desorption (TD) and consecutive gas chromatography-mass spectrometry (GC-MS). Nepetalactone, the main constituent of the oil, was detected in air at a concentration range of 80 to 100 µg/m3 and the amounts were comparable at all four sampling positions. When a human volunteer was sitting behind the repellent curtain and a BGS trap was installed in front of the curtain in laboratory push-pull trials, Ae. aegypti landing collections decreased significantly by 50% compared to repellent-free controls. However, in a semi-field environment, comparable protective effects could not be achieved and further research on suitable repellent concentrations for outdoor implementation will be required.


Assuntos
Aedes , Ambiente Controlado , Repelentes de Insetos , Controle de Mosquitos/métodos , Animais , Humanos , Inseticidas , Laboratórios , Nepeta/química , Óleos Voláteis
3.
J Med Entomol ; 51(6): 1268-75, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26309317

RESUMO

Surveillance of malaria vectors in Africa is most often accomplished using CDC-type light traps or human landing catches (HLCs). Over the past 30 yr, a variety of commercial and experimental mosquito traps have been developed for residential mosquito control or for improved surveillance of disease vector species, including the BG Sentinel (BGS) trap. To optimize collection of Anopheles gambiae Giles using this trap, BGS traps were modified with an opening (vent) added to the trap base to decrease exhaust airflow. Four traps configurations were tested with colony-reared host-seeking female An. gambiae in free-flying laboratory enclosures. Six attractant treatments (three attractants: BG-Lure, Limburger cheese, and a blank, with and without CO2) were tested concurrently. Across all trap-attractant combinations, significantly more mosquitoes (P < 0.05) were collected in standard, unmodified traps set upright (mean: 10.0) or upside down (9.8) than vented traps, whether upright (5.9) or upside down (7.0). The BG-Lure + CO2 and Limburger Cheese + CO2 bait combinations were more attractive than the other attractants tested alone. All attractant combinations collected significantly more mosquitoes than unbaited traps. Field studies are needed to determine if BG-Lure + CO2- or Limburger cheese + CO2-baited BGS traps are comparable with HLCs in collecting host-seeking An. gambiae.


Assuntos
Anopheles , Controle de Mosquitos/instrumentação , Animais , Feminino
4.
Parasit Vectors ; 5: 100, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22621367

RESUMO

BACKGROUND: The interplay between global warming and invasive arthropods in temperate zones is of utmost interest in terms of the potential expansions of vector-borne diseases. Up to now, investigations on the recent establishment of mosquito vectors have focused on temperatures during their phases of activity. However, cold temperatures may also act as a strong ecological constraint. Projected changes in winter climate indicate an increase of mean minimum temperatures of the coldest quarter, less frequent days with frost and a shorter frost-season in Europe at the end of the century. Nevertheless, single cold extremes are also expected to persist under warming scenarios, which have a strong impact on reproduction success. METHODS: Here, the temperature constraints of European Aedes albopictus eggs, which had passed through a diapause, compared to non-diapausing eggs were examined systematically under controlled laboratory conditions. Additionally, one tropical strain of Ae. albopictus and of Ae. aegypti was used in the comparison. RESULTS: The lower temperature threshold tolerated by the European eggs of Ae. albopictus which have undergone a diapause, was -10°C for long term exposures (12 and 24h) and -12°C for 1h exposure. Non-diapausing eggs of European Ae. albopictus were found to hatch after a -7°C cold treatment (8, 12 and 24h exposure). Both tropical aedine species only tolerated the long term treatment at -2°C. Neither Ae. albopictus nor Ae. aegypti eggs hatched after being exposed to -15°C. Survival was mainly influenced by temperature (F = 329.2, df = 1, p < 0.001), whereas the duration of the cold treatment only significantly influenced the hatching response at the thermal limits of survival (F = 5.6, df = 1, p = 0.031) but not at 0°C (F = 0.1, df = 1, p = 0.730). Hatching success after the cold treatment was significantly increased in European eggs, which have undergone a diapause compared to non-diapausing eggs (F = 14.7, df = 3, p < 0.001). These results illustrate rapid adaptation. CONCLUSIONS: Here, low temperature thresholds for aedine mosquito egg survival were detected. The compilation of risk maps for temperate regions can substantially be improved by considering areas where an establishment of a vector population is unlikely due to winter conditions.


Assuntos
Aedes/fisiologia , Óvulo/fisiologia , Adaptação Fisiológica , Animais , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA