Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 46(8): 2651-64, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22421032

RESUMO

The removal of MS2, Qß and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qß and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qß surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qß bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of bacteriophages removal showed significant differences, especially for GA bacteriophage. These results could provide recommendations for drinking water suppliers in terms of selection criteria for membranes. MS2 bacteriophage is widely used as a surrogate for pathogenic waterborne viruses in Europe and the United States. In this study, the choice of MS2 bacteriophage as the best surrogate to be used for assessment of the effectiveness of drinking water treatment in removal of pathogenic waterborne viruses in worst conditions is clearly challenged. It was shown that GA bacteriophage is potentially a better surrogate as a worst case than MS2. Considering GA bacteriophage as the best surrogate in this study, a chlorine disinfection step could guaranteed a complete removal of this model and ensure the safety character of drinking water plants.


Assuntos
Bacteriófagos/isolamento & purificação , Água Potável/virologia , Levivirus/isolamento & purificação , Purificação da Água/métodos , Cloro/isolamento & purificação , França , Membranas Artificiais , Projetos Piloto , Rios/química , Soluções , Ultrafiltração , Inativação de Vírus , Purificação da Água/instrumentação , Qualidade da Água
2.
Water Res ; 45(3): 1087-94, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21093012

RESUMO

Free-living amoebae might be pathogenic by themselves and be a reservoir for bacterial pathogens, such as Legionella pneumophila. Not only could amoebae protect intra-cellular Legionella but Legionella grown within amoebae could undergo physiological modifications and become more resistant and more virulent. Therefore, it is important to study the efficiency of treatments on amoebae and Legionella grown within these amoebae to improve their application and to limit their impact on the environment. With this aim, we compared various water disinfectants against trophozoites of three Acanthamoeba strains and L. pneumophila alone or in co-culture. Three oxidizing disinfectants (chlorine, monochloramine, and chlorine dioxide) were assessed. All the samples were treated with disinfectants for 1 h and the disinfectant concentration was followed to calculate disinfectant exposure (Ct). We noticed that there were significant differences of susceptibility among the Acanthamoeba strains. However no difference was observed between infected and non-infected amoebae. Also, the comparison between the three disinfectants indicates that monochloramine was efficient at the same level towards free or co-cultured L. pneumophila while chlorine and chlorine dioxide were less efficient on co-cultured L. pneumophila. It suggests that these disinfectants should have different modes of action. Finally, our results provide for the first time disinfectant exposure values for Acanthamoeba treatments that might be used as references for disinfection of water systems.


Assuntos
Acanthamoeba/efeitos dos fármacos , Cloro/farmacologia , Desinfetantes/farmacologia , Legionella pneumophila/efeitos dos fármacos , Animais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA