Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(31): eadg8842, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531421

RESUMO

Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cß2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl- secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite.


Assuntos
Acetilcolina , Traqueia , Camundongos , Animais , Traqueia/metabolismo , Transdução de Sinais , Succinatos/metabolismo , Epitélio/metabolismo
2.
Sci Immunol ; 7(69): eabf6734, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245090

RESUMO

The gallbladder stores bile between meals and empties into the duodenum upon demand and is thereby exposed to the intestinal microbiome. This exposure raises the need for antimicrobial factors, among them, mucins produced by cholangiocytes, the dominant epithelial cell type in the gallbladder. The role of the much less frequent biliary tuft cells is still unknown. We here show that propionate, a major metabolite of intestinal bacteria, activates tuft cells via the short-chain free fatty acid receptor 2 and downstream signaling involving the cation channel transient receptor potential cation channel subfamily M member 5. This results in corelease of acetylcholine and cysteinyl leukotrienes from tuft cells and evokes synergistic paracrine effects upon the epithelium and the gallbladder smooth muscle, respectively. Acetylcholine triggers mucin release from cholangiocytes, an epithelial defense mechanism, through the muscarinic acetylcholine receptor M3. Cysteinyl leukotrienes cause gallbladder contraction through their cognate receptor CysLTR1, prompting emptying and closing. Our results establish gallbladder tuft cells as sensors of the microbial metabolite propionate, initiating dichotomous innate defense mechanisms through simultaneous release of acetylcholine and cysteinyl leukotrienes.


Assuntos
Acetilcolina , Propionatos , Acetilcolina/metabolismo , Células Epiteliais/metabolismo , Leucotrienos
3.
Pflugers Arch ; 473(8): 1169-1170, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34173035
4.
Proc Natl Acad Sci U S A ; 117(46): 29090-29100, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33122432

RESUMO

TRPM3 channels play important roles in the detection of noxious heat and in inflammatory thermal hyperalgesia. The activity of these ion channels in somatosensory neurons is tightly regulated by µ-opioid receptors through the signaling of Gßγ proteins, thereby reducing TRPM3-mediated pain. We show here that Gßγ directly binds to a domain of 10 amino acids in TRPM3 and solve a cocrystal structure of this domain together with Gßγ. Using these data and mutational analysis of full-length proteins, we pinpoint three amino acids in TRPM3 and their interacting partners in Gß1 that are individually necessary for TRPM3 inhibition by Gßγ. The 10-amino-acid Gßγ-interacting domain in TRPM3 is subject to alternative splicing. Its inclusion in or exclusion from TRPM3 channel proteins therefore provides a mechanism for switching on or off the inhibitory action that Gßγ proteins exert on TRPM3 channels.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/farmacologia , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/farmacologia , Canais de Cátion TRPM/química , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/química , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Modelos Moleculares , Mutação , Neurônios/metabolismo , Dor/metabolismo , Receptores Opioides/metabolismo , Canais de Cátion TRPM/genética
5.
J Mol Histol ; 51(4): 421-435, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32617896

RESUMO

Tuft cells are a rare population of chemosensory cells at the mucosal surface epithelia of hollow organs. Their name-giving morphological feature is an apical tuft of stiff microvilli. Accordingly, the actin-binding protein, villin, was identified as one of the first tuft cell markers in immunohistochemical analysis. Unfortunately, villin expression is not restricted to tuft cells, but is also prominent e.g. in enterocytes, which limits the use of this gene as a marker and as an experimental tool to genetically target tuft cells. Here, we report that the villin-related protein, advillin, is a specific tuft cell marker in the gastro-intestinal and biliary tract epithelia. In situ hybridization and immunohistochemistry revealed that advillin expression, unlike villin, was restricted to solitary cholinergic tuft cells in the mucosal linings of the small and large intestine, and in the gall bladder. In the glandular stomach, villin and advillin mRNA were present in all epithelial cells, while detectable protein levels were confined to solitary tuft cells. Advillin expression was no longer detectable in the mucosa of the intestinal and biliary tract from Pou2f3 deficient mice that lack tuft cells. Finally, crossing Avil-Cre transgenic mice with a double-fluorescent reporter mouse line resulted in specific targeting of gastro-intestinal and biliary tuft cells. Our analysis introduces advillin as a selective marker and tool in histological and functional analysis of the alimentary tract tuft cell system.


Assuntos
Sistema Biliar/metabolismo , Biomarcadores/metabolismo , Células Quimiorreceptoras/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Proteínas dos Microfilamentos/metabolismo , Animais , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Transgênicos , Microvilosidades/metabolismo
6.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294408

RESUMO

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Assuntos
Acetilcolina/imunologia , Proteínas de Bactérias/farmacologia , Cílios/imunologia , Depuração Mucociliar/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Canais de Cátion TRPM/imunologia , Traqueia/imunologia , Acetilcolina/metabolismo , Animais , Proteínas de Bactérias/imunologia , Transporte Biológico , Cílios/efeitos dos fármacos , Cílios/metabolismo , Feminino , Formiatos/metabolismo , Expressão Gênica , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética/métodos , Comunicação Parácrina/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Papilas Gustativas/imunologia , Papilas Gustativas/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/patologia , Virulência
7.
ACS Cent Sci ; 4(9): 1155-1165, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30276248

RESUMO

Steroids have numerous physiological functions associated with cellular signaling or modulation of the lipid membrane structure and dynamics, and as such, they have found broad pharmacological applications. Steroid-membrane interactions are relevant to multiple steps of steroid biosynthesis and action, as steroids are known to interact with neurotransmitter or membrane steroid receptors, and steroids must cross lipid membranes to exert their physiological functions. Therefore, rationalizing steroid function requires understanding of steroid-membrane interactions. We combined molecular dynamics simulations and isothermal titration calorimetry to characterize the conformations and the energetics of partitioning, in addition to the kinetics of flip-flop transitions and membrane exit, of 26 representative steroid compounds in a model lipid membrane. The steroid classes covered in this study include birth control and anabolic drugs, sex and corticosteroid hormones, neuroactive steroids, as well as steroids modulating the lipid membrane structure. We found that the conformational ensembles adopted by different steroids vary greatly, as quantified by their distributions of tilt angles and insertion depths into the membrane, ranging from well-defined steroid conformations with orientations either parallel or normal to the membrane, to wide conformational distributions. Surprisingly, despite their chemical diversity, the membrane/water partition coefficient is similar among most steroids, except for structural steroids such as cholesterol, leading to similar rates for exiting the membrane. By contrast, the rates of steroid flip-flop vary by at least 9 orders of magnitude, revealing that flip-flop is the rate-limiting step during cellular uptake of polar steroids. This study lays the ground for a quantitative understanding of steroid-membrane interactions, and it will hence be of use for studies of steroid biosynthesis and function as well as for the development and usage of steroids in a pharmacological context.

8.
Cell Mol Life Sci ; 75(22): 4235-4250, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29987362

RESUMO

PTEN prevents tumor genesis by antagonizing the PI3 kinase/Akt pathway through D3 site phosphatase activity toward PI(3,4)P2 and PI(3,4,5)P3. The structural determinants of this important specificity remain unknown. Interestingly, PTEN shares remarkable homology to voltage-sensitive phosphatases (VSPs) that dephosphorylate D5 and D3 sites of PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3. Since the catalytic center of PTEN and VSPs differ markedly only in TI/gating loop and active site motif, we wondered whether these differences explained the variation of their substrate specificity. Therefore, we introduced mutations into PTEN to mimic corresponding sequences of VSPs and studied phosphatase activity in living cells utilizing engineered, voltage switchable PTENCiV, a Ci-VSP/PTEN chimera that retains D3 site activity of the native enzyme. Substrate specificity of this enzyme was analyzed with whole-cell patch clamp in combination with total internal reflection fluorescence microscopy and genetically encoded phosphoinositide sensors. In PTENCiV, mutating TI167/168 in the TI loop into the corresponding ET pair of VSPs induced VSP-like D5 phosphatase activity toward PI(3,4,5)P3, but not toward PI(4,5)P2. Combining TI/ET mutations with an A126G exchange in the active site removed major sequence variations between PTEN and VSPs and resulted in D5 activity toward PI(4,5)P2 and PI(3,4,5)P3 of PTENCiV. This PTEN mutant thus fully reproduced the substrate specificity of native VSPs. Importantly, the same combination of mutations also induced D5 activity toward PI(3,4,5)P3 in native PTEN demonstrating that the same residues determine the substrate specificity of the tumor suppressor in living cells. Reciprocal mutations in VSPs did not alter their substrate specificity, but reduced phosphatase activity. In summary, A126 in the active site and TI167/168 in the TI loop are essential determinants of PTEN's substrate specificity, whereas additional features might contribute to the enzymatic activity of VSPs.


Assuntos
PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Alanina/química , Animais , Células CHO , Domínio Catalítico , Linhagem Celular , Cricetulus , Mutação , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositóis/metabolismo , Especificidade por Substrato , Treonina/química
9.
Cell Calcium ; 73: 40-52, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880196

RESUMO

TRPM3 proteins assemble to Ca2+-permeable cation channels in the plasma membrane, which act as nociceptors of noxious heat and mediators of insulin and cytokine release. Here we show that TRPM3 channel activity is strongly dependent on intracellular Ca2+. Conceivably, this effect is attributed to the Ca2+ binding protein calmodulin, which binds to TRPM3 in a Ca2+-dependent manner. We identified five calmodulin binding sites within the amino terminus of TRPM3, which displayed different binding affinities in dependence of Ca2+. Mutations of lysine residues in calmodulin binding site 2 strongly reduced calmodulin binding and TRPM3 activity indicating the importance of this domain for TRPM3-mediated Ca2+ signaling. Our data show that TRPM3 channels are regulated by intracellular Ca2+ and provide the basis for a mechanistic understanding of the regulation of TRPM3 by calmodulin.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Calmodulina/genética , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Fotólise/efeitos dos fármacos , Canais de Cátion TRPM/genética
10.
Elife ; 62017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28826482

RESUMO

Opioids, agonists of µ-opioid receptors (µORs), are the strongest pain killers clinically available. Their action includes a strong central component, which also causes important adverse effects. However, µORs are also found on the peripheral endings of nociceptors and their activation there produces meaningful analgesia. The cellular mechanisms downstream of peripheral µORs are not well understood. Here, we show in neurons of murine dorsal root ganglia that pro-nociceptive TRPM3 channels, present in the peripheral parts of nociceptors, are strongly inhibited by µOR activation, much more than other TRP channels in the same compartment, like TRPV1 and TRPA1. Inhibition of TRPM3 channels occurs via a short signaling cascade involving Gßγ proteins, which form a complex with TRPM3. Accordingly, activation of peripheral µORs in vivo strongly attenuates TRPM3-dependent pain. Our data establish TRPM3 inhibition as important consequence of peripheral µOR activation indicating that pharmacologically antagonizing TRPM3 may be a useful analgesic strategy.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/farmacologia , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/farmacologia , Receptores Opioides mu/metabolismo , Canais de Cátion TRPM/efeitos dos fármacos , Analgésicos Opioides/agonistas , Animais , Escala de Avaliação Comportamental , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nociceptores/fisiologia , Dor/metabolismo , Receptores Opioides/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
11.
Br J Pharmacol ; 173(16): 2555-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27328745

RESUMO

BACKGROUND AND PURPOSE: Signalling through phospholipase C (PLC) controls many cellular processes. Much information on the relevance of this important pathway has been derived from pharmacological inhibition of the enzymatic activity of PLC. We found that the most frequently employed PLC inhibitor, U73122, activates endogenous ionic currents in widely used cell lines. Given the extensive use of U73122 in research, we set out to identify these U73122-sensitive ion channels. EXPERIMENTAL APPROACH: We performed detailed biophysical analysis of the U73122-induced currents in frequently used cell lines. KEY RESULTS: At concentrations required to inhibit PLC, U73122 modulated the activity of transient receptor potential melastatin (TRPM) channels through covalent modification. U73122 was shown to be a potent agonist of ubiquitously expressed TRPM4 channels and activated endogenous TRPM4 channels in CHO cells independently of PLC and of the downstream second messengers PI(4,5)P2 and Ca(2+) . U73122 also potentiated Ca(2) (+) -dependent TRPM4 currents in human Jurkat T-cells, endogenous TRPM4 in HEK293T cells and recombinant human TRPM4. In contrast to TRPM4, TRPM3 channels were inhibited whereas the closely related TRPM5 channels were insensitive to U73122, showing that U73122 exhibits high specificity within the TRPM channel family. CONCLUSIONS AND IMPLICATIONS: Given the widespread expression of TRPM4 and TRPM3 channels, these actions of U73122 must be considered when interpreting its effects on cell function. U73122 may also be useful for identifying and characterizing TRPM channels in native tissue, thus facilitating the analysis of their physiology.


Assuntos
Estrenos/farmacologia , Pirrolidinonas/farmacologia , Canais de Cátion TRPM/agonistas , Fosfolipases Tipo C/antagonistas & inibidores , Células Cultivadas , Relação Dose-Resposta a Droga , Estrenos/administração & dosagem , Células HEK293 , Humanos , Estrutura Molecular , Pirrolidinonas/administração & dosagem , Relação Estrutura-Atividade , Canais de Cátion TRPM/metabolismo , Fosfolipases Tipo C/metabolismo
13.
J Gen Physiol ; 146(1): 51-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26123194

RESUMO

The transient receptor potential (TRP) channel TRPM3 is a calcium-permeable cation channel activated by heat and by the neurosteroid pregnenolone sulfate (PregS). TRPM3 is highly expressed in sensory neurons, where it plays a key role in heat sensing and inflammatory hyperalgesia, and in pancreatic ß cells, where its activation enhances glucose-induced insulin release. However, despite its functional importance, little is known about the cellular mechanisms that regulate TRPM3 activity. Here, we provide evidence for a dynamic regulation of TRPM3 by membrane phosphatidylinositol phosphates (PIPs). Phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) and ATP applied to the intracellular side of excised membrane patches promote recovery of TRPM3 from desensitization. The stimulatory effect of cytosolic ATP on TRPM3 reflects activation of phosphatidylinositol kinases (PI-Ks), leading to resynthesis of PIPs in the plasma membrane. Various PIPs directly enhance TRPM3 activity in cell-free inside-out patches, with a potency order PI(3,4,5)P3 > PI(3,5)P2 > PI(4,5)P2 ≈ PI(3,4)P2 >> PI(4)P. Conversely, TRPM3 activity is rapidly and reversibly inhibited by activation of phosphatases that remove the 5-phosphate from PIPs. Finally, we show that recombinant TRPM3, as well as the endogenous TRPM3 in insuloma cells, is rapidly and reversibly inhibited by activation of phospholipase C-coupled muscarinic acetylcholine receptors. Our results reveal basic cellular mechanisms whereby membrane receptors can regulate TRPM3 activity.


Assuntos
Fosfatidilinositóis/metabolismo , Canais de Cátion TRPM/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Pregnenolona/metabolismo , Células Receptoras Sensoriais/metabolismo
14.
Eur J Cell Biol ; 94(7-9): 420-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111660

RESUMO

An increase in light intensity induces a depolarization in retinal ON-bipolar cells via a reduced glutamate release from presynaptic photoreceptor cells. The underlying transduction cascade in the dendritic tips of ON-bipolar cells involves mGluR6 glutamate receptors signaling to TRPM1 proteins that are an indispensable part of the transduction channel. Several other proteins are recognized to participate in the transduction machinery. Deficiency in many of these leads to congenital stationary night blindness, because rod bipolar cells, a subgroup of ON-bipolar cells, constitute the main route for sensory information under scotopic conditions. Here, we review the current knowledge about TRPM1 ion channels and how their activity is regulated within the postsynaptic compartment of ON-bipolar cells. The functional properties of TRPM1 channels in the dendritic compartment are not well understood as they differ substantially from those of recombinant TRPM1 channels. Critical evaluation of possible explanations of these discrepancies indicates that some key components of this transduction pathway might still not be known. The continued exploration of this pathway will yield further clinically useful insights.


Assuntos
Dendritos/metabolismo , Receptores de Glutamato/metabolismo , Células Bipolares da Retina/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Luz , Miopia/genética , Miopia/patologia , Cegueira Noturna/genética , Cegueira Noturna/patologia , Células Fotorreceptoras/metabolismo , Células Bipolares da Retina/citologia , Sinapses/fisiologia
15.
Pflugers Arch ; 467(6): 1143-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25106481

RESUMO

Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.


Assuntos
Moduladores de Transporte de Membrana/farmacologia , Metais/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Transporte de Íons/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética
16.
Handb Exp Pharmacol ; 222: 427-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24756716

RESUMO

Like most other members of the TRP family, the Trpm3 gene encodes proteins that form cation-permeable ion channels on the plasma membrane. However, TRPM3 proteins have several unique features that set them apart from the other members of this diverse family. The Trpm3 gene encodes for a surprisingly large number of isoforms generated mainly by alternative splicing. Only for two of the (at least) eight sites at which sequence diversity is generated the functional consequences have been elucidated, one leading to nonfunctional channels, the other one profoundly affecting the ionic selectivity. In the Trpm3 gene an intronic microRNA (miR-204) is co-transcribed with Trpm3. By regulating the expression of a multitude of genes, miR-204 increases the functional complexity of the Trpm3 locus. Over the past years, important progress has been made in discovering pharmacological tools to manipulate TRPM3 channel activity. These substances have facilitated the identification of endogenously expressed functional TRPM3 channels in nociceptive neurons, pancreatic beta cells, and vascular smooth muscle cells, among others. TRPM3 channels, which themselves are temperature sensitive, thus have been implicated in sensing noxious heat, in modulating insulin release, and in secretion of inflammatory cytokines. However, in many tissues where TRPM3 proteins are known to be expressed, no functional role has been identified for these channels so far. Because of the availability of adequate pharmacological and genetic tools, it is expected that future investigations on TRPM3 channels will unravel important new aspects and functions of these channels.


Assuntos
Canais de Cátion TRPM/metabolismo , Animais , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Potenciais da Membrana , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Fenótipo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Canais de Cátion TRPM/química , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética
17.
Pflugers Arch ; 466(3): 381-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23719866

RESUMO

Zinc (Zn) is a vital nutrient participating in a myriad of biological processes. The mechanisms controlling its transport through the plasma membrane are far from being completely understood. Two families of eukaryotic zinc transporters are known to date: the Zip (SLC39) and ZnT (SLC30) proteins. In addition, some types of plasmalemmal calcium (Ca)-conducting channels are implied in the cellular uptake of zinc. These ion channels are currently described as systems dedicated to the transport of Ca (and, to some extent, sodium (Na) ions). However, a growing body of evidence supports the view that some of them can also function as pathways for Zn transport. For instance, voltage-gated Ca channels and some types of glutamate-gated receptors have long been known to allow the entry of Zn. More recently, members of the TRP superfamily, another type of Ca-conducting channels, have been shown to permit the uptake of Zn into eukaryotic cells. The aim of this review article is to present the current knowledge supporting the notion that Ca-conducting channels take part in the plasmalemmal transport of Zn.


Assuntos
Canais de Cálcio/metabolismo , Zinco/metabolismo , Animais , Humanos , Transporte de Íons , Receptores Colinérgicos/metabolismo , Receptores de Glutamato/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
18.
Mol Pharmacol ; 84(5): 736-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006495

RESUMO

Transient receptor potential melastatin 3 (TRPM3) is a calcium-permeable nonselective cation channel that is expressed in a subset of dorsal root (DRG) and trigeminal ganglia sensory neurons. TRPM3 can be activated by the neurosteroid pregnenolone sulfate (PregS) and heat. TRPM3⁻/⁻ mice display an impaired sensation of noxious heat and thermal hyperalgesia. We have previously shown that TRPM3 is blocked by the citrus fruit flavanones hesperetin, naringenin, and eriodictyol as well as by ononetin, a deoxybenzoin from Ononis spinosa. To further improve the tolerability, potency, and selectivity of TRPM3 blockers, we conducted a hit optimization procedure by rescreening a focused library that was composed of chemically related compounds. Within newly identified TRPM3 blockers, isosakuranetin and liquiritigenin displayed favorable properties with respect to their inhibitory potency and a selective mode of action. Isosakuranetin, a flavanone whose glycoside is contained in blood oranges and grapefruits, displayed an IC50 of 50 nM and is to our knowledge the most potent inhibitor of TRPM3 identified so far. Both compounds exhibited a marked specificity for TRPM3 compared with other sensory TRP channels, and blocked PregS-induced intracellular free Ca²âº concentration signals and ionic currents in freshly isolated DRG neurons. Furthermore, isosakuranetin and previously identified hesperetin significantly reduced the sensitivity of mice to noxious heat and PregS-induced chemical pain. Because the physiologic functions of TRPM3 channels are still poorly defined, the development and validation of potent and selective blockers is expected to contribute to clarifying the role of TRPM3 in vivo.


Assuntos
Flavanonas/farmacologia , Hiperalgesia/tratamento farmacológico , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Flavonoides/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pregnenolona/farmacologia , Ratos , Ratos Wistar , Canais de Cátion TRPM/fisiologia , Canais de Cátion TRPV/antagonistas & inibidores
19.
J Biol Chem ; 287(44): 36663-72, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22961981

RESUMO

TRPM3 channels form ionotropic steroid receptors in the plasma membrane of pancreatic ß and dorsal root ganglion cells and link steroid hormone signaling to insulin release and pain perception, respectively. We identified and compared the function of a number of TRPM3 splice variants present in mouse, rat and human tissues. We found that variants lacking a region of 18 amino acid residues display neither Ca(2+) entry nor ionic currents when expressed alone. Hence, splicing removes a region that is indispensable for channel function, which is called the ICF region. TRPM3 variants devoid of this region (TRPM3ΔICF), are ubiquitously present in different tissues and cell types where their transcripts constitute up to 15% of the TRPM3 isoforms. The ICF region is conserved throughout the TRPM family, and its presence in TRPM8 proteins is also necessary for function. Within the ICF region, 10 amino acid residues form a domain essential for the formation of operative TRPM3 channels. TRPM3ΔICF variants showed reduced interaction with other TRPM3 isoforms, and their occurrence at the cell membrane was diminished. Correspondingly, coexpression of ΔICF proteins with functional TRPM3 subunits not only reduced the number of channels but also impaired TRPM3-mediated Ca(2+) entry. We conclude that TRPM3ΔICF variants are regulatory channel subunits fine-tuning TRPM3 channel activity.


Assuntos
Processamento Alternativo , Canais de Cátion TRPM/genética , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Sequência Conservada , Éxons , Células HEK293 , Humanos , Imunoprecipitação , Potenciais da Membrana , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , Ratos , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo
20.
Diabetes ; 61(6): 1479-89, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492528

RESUMO

Type 2 diabetes mellitus is associated with alterations in bile acid (BA) signaling. The aim of our study was to test whether pancreatic ß-cells contribute to BA-dependent regulation of glucose homeostasis. Experiments were performed with islets from wild-type, farnesoid X receptor (FXR) knockout (KO), and ß-cell ATP-dependent K(+) (K(ATP)) channel gene SUR1 (ABCC8) KO mice, respectively. Sodium taurochenodeoxycholate (TCDC) increased glucose-induced insulin secretion. This effect was mimicked by the FXR agonist GW4064 and suppressed by the FXR antagonist guggulsterone. TCDC and GW4064 stimulated the electrical activity of ß-cells and enhanced cytosolic Ca(2+) concentration ([Ca(2+)](c)). These effects were blunted by guggulsterone. Sodium ursodeoxycholate, which has a much lower affinity to FXR than TCDC, had no effect on [Ca(2+)](c) and insulin secretion. FXR activation by TCDC is suggested to inhibit K(ATP) current. The decline in K(ATP) channel activity by TCDC was only observed in ß-cells with intact metabolism and was reversed by guggulsterone. TCDC did not alter insulin secretion in islets of SUR1-KO or FXR-KO mice. TCDC did not change islet cell apoptosis. This is the first study showing an acute action of BA on ß-cell function. The effect is mediated by FXR by nongenomic elements, suggesting a novel link between FXR activation and K(ATP) channel inhibition.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ácido Taurodesoxicólico/farmacologia , Animais , Glucose/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização/genética , Pregnenodionas/farmacologia , Receptores Citoplasmáticos e Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA