Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 906, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030556

RESUMO

There are both fundamental and practical motivations for studying whether quantum entanglement can exist in macroscopic systems. However, multiparty entanglement is generally fragile and difficult to quantify. Dicke states are multiparty entangled states where a single excitation is delocalized over many systems. Building on previous work on quantum memories for photons, we create a Dicke state in a solid by storing a single photon in a crystal that contains many large atomic ensembles with distinct resonance frequencies. The photon is re-emitted at a well-defined time due to an interference effect analogous to multi-slit diffraction. We derive a lower bound for the number of entangled ensembles based on the contrast of the interference and the single-photon character of the input, and we experimentally demonstrate entanglement between over two hundred ensembles, each containing a billion atoms. We also illustrate the fact that each individual ensemble contains further entanglement.Multipartite entanglement is of both fundamental and practical interest, but is notoriously difficult to witness and characterise. Here, Zarkeshian et al. demonstrate multipartite entanglement in an atomic frequency comb storing a single photon in a Dicke state spread over a macroscopic ensemble.

2.
Phys Rev Lett ; 119(8): 083601, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952756

RESUMO

We propose and experimentally demonstrate a novel approach to a heralded single-photon source based on spectral multiplexing (SMUX) and feed-forward-based spectral manipulation of photons created by means of spontaneous parametric down-conversion in a periodically poled LiNbO_{3} crystal. As a proof of principle, we show that our three-mode SMUX increases the heralded single-photon rate compared to that of the individual modes without compromising the quality of the emitted single photons. We project that by adding further modes, our approach can lead to a deterministic single-photon source.

3.
Phys Rev Lett ; 118(10): 100504, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339230

RESUMO

We characterize the 795 nm ^{3}H_{6} to ^{3}H_{4} transition of Tm^{3+} in a Ti^{4+}:LiNbO_{3} waveguide at temperatures as low as 800 mK. Coherence and hyperfine population lifetimes-up to 117 µs and 2.5 h, respectively-exceed those at 3 K at least tenfold, and are equivalent to those observed in a bulk Tm^{3+}:LiNbO_{3} crystal under similar conditions. We also find a transition dipole moment that is equivalent to that of the bulk. Finally, we prepare a 0.5 GHz-bandwidth atomic frequency comb of finesse >2 on a vanishing background. These results demonstrate the suitability of rare-earth-ion-doped waveguides created using industry-standard Ti indiffusion in LiNbO_{3} for on-chip quantum applications.

4.
Nat Commun ; 7: 13454, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853153

RESUMO

Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals.

5.
Opt Express ; 22(20): 24497-506, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25322025

RESUMO

We experimentally demonstrate a high-efficiency Bell state measurement for time-bin qubits that employs two superconducting nanowire single-photon detectors with short dead-times, allowing projections onto two Bell states, |ψ⁻〉 and |ψ⁺〉. Compared to previous implementations for time-bin qubits, this yields an increase in the efficiency of Bell state analysis by a factor of thirty.

6.
Proc Natl Acad Sci U S A ; 106(27): 10960-5, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541646

RESUMO

Squeezing of quantum fluctuations by means of entanglement is a well-recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between 2-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for greater, similar 10(5) cold caesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A 2-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared with a single-color QND measurement.

7.
Opt Lett ; 33(20): 2323-5, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18923610

RESUMO

We propose a photon echo quantum memory scheme using detuned Raman coupling to long-lived ground states. In contrast to previous three-level schemes based on controlled reversible inhomogeneous broadening that use sequences of pi pulses, the scheme does not require accurate control of the coupling dynamics to the ground states. We present a proof-of-principle experimental realization of our proposal using rubidium atoms in a warm vapor cell. The Raman resonance line is broadened using a magnetic field that varies linearly along the direction of light propagation. Inverting the magnetic field gradient rephases the atomic dipoles and re-emits the light pulse in the forward direction.

8.
Phys Rev Lett ; 100(10): 103601, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352185

RESUMO

We report on the nondestructive observation of Rabi oscillations on the Cs clock transition. The internal atomic state evolution of a dipole-trapped ensemble of cold atoms is inferred from the phase shift of a probe laser beam as measured using a Mach-Zehnder interferometer. We describe a single color as well as a two-color probing scheme. Using the latter, measurements of the collective pseudospin projection of atoms in a superposition of the clock states are performed and the observed spin fluctuations are shown to be close to the standard quantum limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA