Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895857

RESUMO

Excited-state relaxation in two prototypical shortwave infrared (SWIR) polymethine dyes developed for bioimaging, heptamethine chromenylium Chrom7 and flavylium Flav7, is studied by means of femtosecond transient absorption with broadband ultraviolet-to-SWIR probing complemented by steady-state and time-resolved fluorescence and phosphorescence measurements. The relaxation processes of the dyes in dichloromethane are resolved with sub-100 fs temporal resolution using SWIR, near-IR, and visible photoexcitation. Different population members of the ground-state inhomogeneous ensemble are found to equilibrate via skeletal deformation changes with time constants of 90 fs and either 230 fs (Chrom7) and 350 fs (Flav7) followed by slower evolution matching the 1-ps timescale of diffusive solvation dynamics. Molecules excited into high-lying singlet electronic states (Sn) by visible excitation repopulate with time constants of 400 fs (Chrom7) and 450 fs (Flav7) the corresponding first excited singlet S1 states, which decay within several hundreds of picoseconds in dichloromethane and chloroform solvents. Vibrational relaxation in S1 for both Chrom7 and Flav7 in dichloromethane occurs with time constants of 350 and 800 fs for excess of vibrational energy of ∼1000 and 10 000 cm-1 deposited by near-IR and visible excitation, respectively. Two competing non-radiative processes are present in S1: temperature-independent internal conversion, and thermally-activated twisting about a carbon-carbon bond of the conjugated chain, which is substantial at room temperature but essentially nonreactive, producing traces of isomer product. Intersystem crossing in S1, and thus the triplet quantum yield, is minor. The importance of absorption bands from the excited S1 state in applications requiring high-intensity excitation conditions is discussed.

2.
J Phys Chem Lett ; 13(46): 10863-10870, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36384033

RESUMO

Excited-state dynamics of trans-4,4'-azopyridine in ethanol is studied using femtosecond transient absorption with 30 fs temporal resolution. Exciting the system at three different wavelengths, 460 and 290 (275) nm, to access the S1 nπ* and S2 ππ* electronic states, respectively, reveals a 195 cm-1 vibrational coherence, which suggests that the same mode is active in both nπ* and ππ* relaxation channels. Following S1-excitation, relaxation proceeds via a nonrotational pathway, where a fraction of the nπ* population is trapped in a planar minimum (lifetime, 2.1 ps), while the remaining population travels further to a second shallow minimum (lifetime, 300 fs) prior to decay into the ground state. Population of the S2 state leads to 30 fs nonrotational relaxation with a concurrent buildup of nπ* population and nearly simultaneous formation of hot ground-state species. An increase in the cis-isomer quantum yield upon ππ* versus nπ* excitation is observed, which is opposite to trans-azobenzene.


Assuntos
Piridinas , Vibração , Isomerismo , Piridinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA