Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901910

RESUMO

Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers, in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI), anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon. The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM (HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of 3-10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0, distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried out. The results obtained can be taken into account when developing new drug delivery platforms.


Assuntos
Doxorrubicina , Neoplasias , Humanos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Íons/uso terapêutico
2.
Arterioscler Thromb Vasc Biol ; 39(1): 37-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580561

RESUMO

Objective- After activation at the site of vascular injury, platelets differentiate into 2 subpopulations, exhibiting either proaggregatory or procoagulant phenotype. Although the functional role of proaggregatory platelets is well established, the physiological significance of procoagulant platelets, the dynamics of their formation, and spatial distribution in thrombus remain elusive. Approach and Results- Using transmission electron microscopy and fluorescence microscopy of arterial thrombi formed in vivo after ferric chloride-induced injury of carotid artery or mechanical injury of abdominal aorta in mice, we demonstrate that procoagulant platelets are located at the periphery of the formed thrombi. Real-time cell tracking during thrombus formation ex vivo revealed that procoagulant platelets originate from different locations within the thrombus and subsequently translocate towards its periphery. Such redistribution of procoagulant platelets was followed by generation of fibrin at thrombus surface. Using in silico model, we show that the outward translocation of procoagulant platelets can be driven by the contraction of the forming thrombi, which mechanically expels these nonaggregating cells to thrombus periphery. In line with the suggested mechanism, procoagulant platelets failed to translocate and remained inside the thrombi formed ex vivo in blood derived from nonmuscle myosin ( MYH9)-deficient mice. Ring-like distribution of procoagulant platelets and fibrin around the thrombus observed with blood of humans and wild-type mice was not present in thrombi of MYH9-knockout mice, confirming a major role of thrombus contraction in this phenomenon. Conclusions- Contraction of arterial thrombus is responsible for the mechanical extrusion of procoagulant platelets to its periphery, leading to heterogeneous structure of thrombus exterior.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Trombose/etiologia , Animais , Movimento Celular , Fibrina/análise , Camundongos , Agregação Plaquetária/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA