Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 11(1): 2096359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813574

RESUMO

The contribution of the T cell-related inhibitory checkpoint PD-1 to the regulation of NK cell activity is still not clear with contradictory results concerning its expression and role in the modulation of NK cell cytotoxicity. We provide novel key findings on the mechanism involved in the regulation of PD-1 expression on NK cell membrane and its functional consequences for the elimination of cancer cells. In contrast to freshly isolated NK cells from cancer patients, those from healthy donors did not express PD-1 on the cell membrane. However, when healthy NK cells were incubated with tumor target cells, membrane PD-1 expression increased, concurrent with the CD107a surface mobilization. This finding suggested that PD-1 was translocated to the cell membrane during NK cell degranulation after contact with target cells. Indeed, cytosolic PD-1 was expressed in freshly-isolated-NK cells and partly co-localized with CD107a and GzmB, confirming that membrane PD-1 corresponded to a pool of preformed PD-1. Moreover, NK cells that had mobilized PD-1 to the cell membrane presented a significantly reduced anti-tumor activity on PD-L1-expressing-tumor cells in vitro and in vivo, which was partly reversed by using anti-PD-1 blocking antibodies. Our results indicate that NK cells from healthy individuals express cytotoxic granule-associated PD-1, which is rapidly mobilized to the cell membrane after interaction with tumor target cells. This novel finding helps to understand how PD-1 expression is regulated on NK cell membrane and the functional consequences of this expression during the elimination of tumor cells, which will help to design more efficient NK cell-based cancer immunotherapies.


Assuntos
Antineoplásicos , Neoplasias , Membrana Celular/metabolismo , Humanos , Imunoterapia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária
2.
Front Oncol ; 10: 568939, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117698

RESUMO

The advances in molecular biology and the emergence of Next Generation Sequencing (NGS) have revealed that microbiome composition is closely related with health and disease, including cancer. This relationship affects different levels of cancer such as development, progression, and response to treatment including immunotherapy. The efficacy of immune checkpoint inhibitors (ICIs) may be influenced by the concomitant use of antibiotics before, during or shortly after treatment with ICIs. Nevertheless, the linking mechanism between microbiote, host immunity and cancer is not clear and the role of microbiota manipulation and analyses in cancer management has not been clinically validated yet. Regarding the use of microbiome as biomarker to predict ICI efficacy it has been recently shown that the use of biochemical serum markers to monitor intestinal permeability and loss of barrier integrity, like citrulline, could be useful to monitor microbiota changes and predict ICI efficacy. There are still many unknowns about the role of these components, their relationship with the microbiota, with the use of antibiotics and the response to immunotherapy. The next challenge in microbiome research will be to identify individual microbial species that causally affect lung cancer phenotypes and response to ICI and disentangle the underlying mechanisms. Thus, further analyses in patients with lung cancer receiving treatment with ICIs and its correlation with the composition of the microbiota in different organs including the respiratory tract, peripheral blood and intestinal tract could be useful to predict the efficacy of ICIs and its modulation with antibiotic use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA