Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 162, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210549

RESUMO

T helper 17 (Th17) cells develop in response to T cell receptor signals (TCR) in the presence of specific environments, and produce the inflammatory cytokine IL17A. These cells have been implicated in a number of inflammatory diseases and represent a potential target for ameliorating such diseases. The kinase ITK, a critical regulator of TCR signals, has been shown to be required for the development of Th17 cells. However, we show here that lung inflammation induced by Saccharopolyspora rectivirgula (SR) induced Hypersensitivity pneumonitis (SR-HP) results in a neutrophil independent, and ITK independent Th17 responses, although ITK signals are required for γδ T cell production of IL17A. Transcriptomic analysis of resultant ITK independent Th17 cells suggest that the SR-HP-induced extrinsic inflammatory signals may override intrinsic T cell signals downstream of ITK to rescue Th17 responses in the absence of ITK. These findings suggest that the ability to pharmaceutically target ITK to suppress Th17 responses may be dependent on the type of inflammation.


Assuntos
Alveolite Alérgica Extrínseca , Pneumonia , Proteínas Tirosina Quinases , Células Th17 , Alveolite Alérgica Extrínseca/enzimologia , Alveolite Alérgica Extrínseca/imunologia , Alveolite Alérgica Extrínseca/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/enzimologia , Pneumonia/imunologia , Pneumonia/metabolismo , Proteínas Tirosina Quinases/imunologia , Células Th17/enzimologia , Células Th17/imunologia , Células Th17/metabolismo
2.
Medicine (Baltimore) ; 99(43): e22351, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33120736

RESUMO

Asthma is a chronic inflammatory and multifactorial respiratory tract disease. It affects over 18 million adults and 6 million children in the USA with Puerto Ricans showing the highest prevalence (12%-19%). This airways illness can be triggered by an environmental stimulus such as grass pollen, fungi spores, cockroaches allergens, dust mites metabolic compounds, and importantly, by environmental proteases such as trypsin and tryptase. Because of the pivotal role of proteases in the onset of asthma pathophysiology, we focused this study on the serine Protease Activated Receptor-2 (PAR-2), a G-protein-coupled receptor widely expressed in cells across the respiratory tract. Herein, we measured the activation of PAR-2 on primary pulmonary bronchial/tracheal epithelial cells, human small airway epithelial cells, lung bronchial smooth muscle cells (with and without asthma). We tested human-derived eosinophils from 61 Puerto Rican participants (33 asthmatic and 28 non-asthmatic). As surrogate of PAR-2 activation or inhibition we used intracellular calcium mobilization assay. We hypothesized that following exposure of the PAR-2 agonist (AC264613), the studied human primary cell types will increase the mobilization of intracellular calcium levels. In contrast, we expected a decrease of the intracellular calcium levels upon exposure to a PAR-2 antagonist (FSLLRY-NH2). The Puerto Rican-derived eosinophils were analyzed for the proinflammatory markers MAPK/PI3K using flow cytometry (n = 8). As expected, the PAR-2 agonist significantly increased the activation of PAR-2 on the bronchial/tracheal epithelial cells, bronchial smooth muscle cells and human small airway epithelial cells (P = .01). The PAR-2 antagonist significantly decreased the intracellular calcium levels of these lung primary down to undetectable levels (P = .01). Remarkably, the asthmatic-derived eosinophils showed a striking 300% increase of intracellular calcium mobilization suggesting a severe response to the PAR-2 agonist stimuli in asthmatics. In contrast, there were no significant changes between groups after adding the PAR-2 antagonist. Our outcomes revealed that PAR-2 antagonist effectively inhibited the studied primary cells, expecting to decrease the immune response of eosinophils. Most importantly, our results reveal a promising role for the PAR-2 antagonist in targeting bronchial/tracheal epithelial cells, human small airway epithelial cells and bronchial smooth muscle cells with the potential to oblige an asthma adjuvant therapy.


Assuntos
Asma/tratamento farmacológico , Receptor PAR-2/antagonistas & inibidores , Asma/metabolismo , Biomarcadores/metabolismo , Brônquios/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Citometria de Fluxo , Humanos , Pulmão/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Transdução de Sinais , Traqueia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA