Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 17(6): 064103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058462

RESUMO

The human vasculature is essential in organs and tissues for the transport of nutrients, metabolic waste products, and the maintenance of homeostasis. The integration of vessels in in vitro organs-on-chip may, therefore, improve the similarity to the native organ microenvironment, ensuring proper physiological functions and reducing the gap between experimental research and clinical outcomes. This gap is particularly evident in drug testing and the use of vascularized models may provide more realistic insights into human responses to drugs in the pre-clinical phases of the drug development pipeline. In this context, different vascularized liver models have been developed to recapitulate the architecture of the hepatic sinusoid, exploiting either porous membranes or bioprinting techniques. In this work, we developed a method to generate perfusable vascular channels with a circular cross section within organs-on-chip without any interposing material between the parenchyma and the surrounding environment. Through this technique, vascularized liver sinusoid-on-chip systems with and without the inclusion of the space of Disse were designed and developed. The recapitulation of the Disse layer, therefore, a gap between hepatocytes and endothelial cells physiologically present in the native liver milieu, seems to enhance hepatic functionality (e.g., albumin production) compared to when hepatocytes are in close contact with endothelial cells. These findings pave the way to numerous further uses of microfluidic technologies coupled with vascularized tissue models (e.g., immune system perfusion) as well as the integration within multiorgan-on-chip settings.

2.
Integr Biol (Camb) ; 8(2): 194-204, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26837282

RESUMO

In vivo, tissues are maintained and repaired through interactions between the present (different) cell types, which communicate with each other through both the secretion of paracrine factors and direct cell-cell contacts. In order to investigate and better understand this dynamic, complex interplay among diverse cell populations, we must develop new in vitro co-culture strategies that enable us to recapitulate such native tissue complexity. In this work, a microfluidic mixer based on a staggered herringbone design was computationally designed and experimentally validated that features the ability to mix large, non-diffusive particles (i.e. live cells) in a programmed manner. This is the first time that the herringbone mixer concept has been shown to effectively mix particles of the size range applicable to live cells. The cell mixer allowed for sequentially mixing of two cell types to generate reverse linear concentration co-culture patterns. Once validated, the mixer was integrated into a perfused microbioreactor array as an upstream module to deliver mixed cells to five downstream culture units, each consisting of ten serially-connected circular microculture chambers. This novel cell mixer microbioreactor array (CM-MBA) platform was validated through the establishment of spatio-temporally tunable osteogenic co-culture models, investigating the role of pre-osteoblastic cells (SAOS2) on human mesenchymal stem cells (hMSCs) commitment to an osteogenic endpoint. An increase on expression of alkaline phosphatase in sequential (downstream) chambers, consistent with the initial linear distribution of SAOS2, suggests not only osteoblastic cell-driven hMSCs induction towards the osteogenic phenotype, but also the importance of paracrine signaling. In conclusion, the cell mixer microbioreactor array combines the ability to rapidly establish cell co-culture models in a high-throughput, programmable fashion, with the additional advantage of maintaining cells in culture under perfused medium to explore paracrine factor impacts, representing a promising new tool for directing multi-cellular tissue formation for tissue engineering applications.


Assuntos
Reatores Biológicos , Técnicas de Cocultura , Dispositivos Lab-On-A-Chip , Fosfatase Alcalina/metabolismo , Animais , Comunicação Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Difusão , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Técnicas Analíticas Microfluídicas , Células NIH 3T3 , Osteoblastos/citologia , Osteogênese , Comunicação Parácrina , Fenótipo , Transdução de Sinais , Software , Engenharia Tecidual/métodos
3.
Biofabrication ; 5(3): 035002, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23685332

RESUMO

Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells-cells and cells-extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Fotoquímica/métodos , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Células-Tronco Mesenquimais/citologia , Polimerização/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA