Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(28): 31551-31566, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793155

RESUMO

Biofunctionalization of silk biomaterial surfaces with extracellular matrix (ECM) molecules, cell binding peptides, or growth factors is important in a range of applications, including tissue engineering and development of implantable medical devices. Passive adsorption is the most common way to immobilize molecules of interest on preformed silk biomaterials but can lead to random molecular orientations and displacement from the surface, limiting their applications. Herein, we developed techniques for covalent immobilization of biomolecules using enzyme- or photoinitiated formation of dityrosine bonds between the molecule of interest and silk. Using recombinantly expressed domain V of the human basement membrane proteoglycan perlecan (rDV) as a model molecule, we demonstrated that rDV can be covalently immobilized via dityrosine cross-linking without the need to modify rDV or silk biomaterials. Dityrosine-based immobilization resulted in a different molecular orientation to passively absorbed rDV with less C- and N-terminal region exposure on the surface. Dityrosine-based immobilization supported functional rDV immobilization where immobilized rDV supported endothelial cell adhesion, spreading, migration, and proliferation. These results demonstrate the utility of dityrosine-based cross-linking in covalent immobilization of tyrosine-containing molecules on silk biomaterials in the absence of chemical modification, adding a simple and accessible technique to the silk biofunctionalization toolbox.


Assuntos
Materiais Biocompatíveis , Seda , Adesão Celular , Humanos , Seda/química , Tirosina/análogos & derivados , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA