Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(4): e0041423, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409813

RESUMO

Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus Aspergillus, including Aspergillus fumigatus, the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for Aspergillus nidulans (AnUGP). To understand the molecular basis of AnUGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native AnUGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed ß-helix oligomerization domain. AnUGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for AnUGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in Aspergillus species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus Aspergillus nidulans reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens.

2.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088665

RESUMO

While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria use an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-electron microscopy to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S ribosomal RNA central to decoding site maturation and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.


Assuntos
Subunidades Ribossômicas Menores de Bactérias , Ribossomos , Microscopia Crioeletrônica , RNA Ribossômico 16S/genética , Subunidades Ribossômicas Menores
3.
Biomol NMR Assign ; 14(2): 317-321, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32671633

RESUMO

RbfA (ribosome binding factor A; 15.2 kDa) is a protein involved in ribosome biogenesis and has been shown to be important for growth at low temperatures and to act as a suppressor for a cold-sensitive mutation (C23U) in the ribosomal RNA of the small 30S ribosomal subunit. The 3D structure of isolated RbfA has been determined from several organisms showing that RbfA has type-II KH-domain fold topology similar to the KH domain of another assembly factor, Era, whose overexpression can compensate for the deletion of rbfA, suppressing both the cold sensitivity and abnormal accumulation of 17S rRNA in rbfA knockout stains. Interestingly, a RbfAΔ25 variant used in previous NMR studies, truncated at the C-terminal domain to remove 25 unstructured residues causing aggregation at room temperature, was biologically active in the sense that it could complement a knock-out of wildtype RbfA, although it did not act as a suppressor for a 16S cold-sensitive mutation (C23U), nor did it interact stably with the 30S subunit. To complement this work, we report the 1H, 13C, and 15 N backbone and sidechain NMR resonance assignments of full length RbfA from Escherichia coli measured under physiological conditions (pH 7.6). This construct contains seven additional C-terminal residues from the cloning (i.e. one alanine and six residues from the HRV 3C cleavage site) and no aggregation issues were observed over a 1-week period at 293 K. The assignment data has been deposited in the BMRB data bank under Accession No. 27857.


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Ribossômicas/análise , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas de Escherichia coli/química , Estrutura Secundária de Proteína , Proteínas Ribossômicas/química
4.
Biomol NMR Assign ; 14(2): 189-193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32303998

RESUMO

Ribosome biogenesis is an energetically expensive and complex cellular process that involves the coordinated folding of the ribosomal RNA and dozens of ribosomal proteins. It proceeds along multiple parallel pathways and is guided by trans-acting factors called ribosome assembly factors. Although this process has been studied for decades, there are still many open questions regarding the role of the ribosome assembly factors in directing the folding of ribosome biogenesis intermediates. RimP is one of the early acting factors and guides the assembly of the small 30S ribosomal subunit by facilitating the binding of ribosomal proteins uS5 and uS12. Here we report the virtually complete 1H, 15N, and 13C chemical shift assignment of RimP from Escherichia coli. The NMR chemical shift data, deposited in the BMRB data bank under Accession No. 28014, indicates a widely folded protein composed of three alpha helices and eight beta strands.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Ribossômicas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
5.
J Biol Chem ; 293(43): 16709-16723, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206120

RESUMO

The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with N-oleoyl-galactosylceramide. Using this domain, FAPP2 transports glucosylceramide from its cis-Golgi synthesis site to the trans-Golgi for conversion into complex GSLs. The FAPP2-GLTPH structure revealed an element, termed the ID loop, that controls specificity in the GLTP family. We found that, in accordance with FAPP2 preference for simple GSLs, the ID loop protrudes from behind the SL headgroup-recognition center to mitigate binding by complex GSLs. Mutational analyses including GLTP and FAPP2 chimeras with swapped ID loops supported the proposed restrictive role of the FAPP2 ID loop in GSL selectivity. Comparative analysis revealed distinctly designed ID loops in each GLTP family member. This analysis also disclosed a conserved H-bond triplet that "clasps" both ID-loop ends together to promote structural autonomy and rigidity. The findings indicated that various ID loops work in concert with conserved recognition centers to create different specificities among family members. We also observed four bulky, conserved hydrophobic residues involved in "sensor-like" interactions with lipid chains in protein hydrophobic pockets and FF motifs in GLTP and FAPP2, well-positioned to provide acyl chain-dependent SL selectivity for the hydrophobic pockets. In summary, our study provides mechanistic insights into sphingolipid recognition by the GLTP fold and uncovers the elements involved in this recognition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Transporte/química , Esfingolipídeos/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Dados de Sequência Molecular , Família Multigênica , Conformação Proteica , Alinhamento de Sequência , Esfingolipídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(16): E2286-95, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27071098

RESUMO

In prokaryotic systems, the initiation phase of protein synthesis is governed by the presence of initiation factors that guide the transition of the small ribosomal subunit (30S) from an unlocked preinitiation complex (30S preIC) to a locked initiation complex (30SIC) upon the formation of a correct codon-anticodon interaction in the peptidyl (P) site. Biochemical and structural characterization of GE81112, a translational inhibitor specific for the initiation phase, indicates that the main mechanism of action of this antibiotic is to prevent P-site decoding by stabilizing the anticodon stem loop of the initiator tRNA in a distorted conformation. This distortion stalls initiation in the unlocked 30S preIC state characterized by tighter IF3 binding and a reduced association rate for the 50S subunit. At the structural level we observe that in the presence of GE81112 the h44/h45/h24a interface, which is part of the IF3 binding site and forms ribosomal intersubunit bridges, preferentially adopts a disengaged conformation. Accordingly, the findings reveal that the dynamic equilibrium between the disengaged and engaged conformations of the h44/h45/h24a interface regulates the progression of protein synthesis, acting as a molecular switch that senses and couples the 30S P-site decoding step of translation initiation to the transition from an unlocked preIC to a locked 30SIC state.


Assuntos
Antibacterianos/química , Escherichia coli/química , Iniciação Traducional da Cadeia Peptídica , RNA Bacteriano/química , RNA Ribossômico 16S/química , RNA de Transferência/química , Subunidades Ribossômicas Menores de Bactérias/química , Conformação de Ácido Nucleico
7.
Nucleic Acids Res ; 43(20): 10015-25, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26464437

RESUMO

Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.


Assuntos
Cinamatos/química , Cinamatos/farmacologia , Higromicina B/análogos & derivados , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Sítios de Ligação , Cinamatos/metabolismo , Cristalografia por Raios X , Higromicina B/química , Higromicina B/metabolismo , Higromicina B/farmacologia , Modelos Moleculares , Peptidil Transferases/química , Peptidil Transferases/efeitos dos fármacos , Inibidores da Síntese de Proteínas/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/enzimologia , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
8.
Q Rev Biophys ; 48(3): 281-322, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25797198

RESUMO

Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer 'sandwich' architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation. A new understanding of the structural versatility and evolutionary premium placed on the GLTP motif has emerged. Human GLTP-motifs have evolved to function not only as glucosylceramide binding/transferring domains for phosphoinositol 4-phosphate adaptor protein-2 during glycosphingolipid biosynthesis but also as selective binding/transfer proteins for ceramide-1-phosphate. The latter, known as ceramide-1-phosphate transfer protein, recently has been shown to form GLTP-fold while critically regulating Group-IV cytoplasmic phospholipase A2 activity and pro-inflammatory eicosanoid production.


Assuntos
Proteínas de Transporte/metabolismo , Esfingolipídeos/metabolismo , Glicolipídeos/metabolismo , Dobramento de Proteína
9.
Antimicrob Agents Chemother ; 59(5): 2849-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753625

RESUMO

Although both tetracycline and tigecycline inhibit protein synthesis by sterically hindering the binding of tRNA to the ribosomal A site, tigecycline shows increased efficacy in both in vitro and in vivo activity assays and escapes the most common resistance mechanisms associated with the tetracycline class of antibiotics. These differences in activities are attributed to the tert-butyl-glycylamido side chain found in tigecycline. Our structural analysis by X-ray crystallography shows that tigecycline binds the bacterial 30S ribosomal subunit with its tail in an extended conformation and makes extensive interactions with the 16S rRNA nucleotide C1054. These interactions restrict the mobility of C1054 and contribute to the antimicrobial activity of tigecycline, including its resistance to the ribosomal protection proteins.


Assuntos
Minociclina/análogos & derivados , Ribossomos/metabolismo , Cristalografia por Raios X , Minociclina/metabolismo , Minociclina/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , RNA Ribossômico 16S/metabolismo , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/metabolismo , Tigeciclina
10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 4): 603-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23519669

RESUMO

Human glycolipid transfer protein (hsGLTP) forms the prototypical GLTP fold and is characterized by a broad transfer selectivity for glycosphingolipids (GSLs). The GLTP mutation D48V near the `portal entrance' of the glycolipid binding site has recently been shown to enhance selectivity for sulfatides (SFs) containing a long acyl chain. Here, nine novel crystal structures of hsGLTP and the SF-selective mutant complexed with short-acyl-chain monoSF and diSF in different crystal forms are reported in order to elucidate the potential functional roles of lipid-mediated homodimerization. In all crystal forms, the hsGLTP-SF complexes displayed homodimeric structures supported by similarly organized intermolecular interactions. The dimerization interface always involved the lipid sphingosine chain, the protein C-terminus (C-end) and α-helices 6 and 2, but the D48V mutant displayed a `locked' dimer conformation compared with the hinge-like flexibility of wild-type dimers. Differences in contact angles, areas and residues at the dimer interfaces in the `flexible' and `locked' dimers revealed a potentially important role of the dimeric structure in the C-end conformation of hsGLTP and in the precise positioning of the key residue of the glycolipid recognition centre, His140. ΔY207 and ΔC-end deletion mutants, in which the C-end is shifted or truncated, showed an almost complete loss of transfer activity. The new structural insights suggest that ligand-dependent reversible dimerization plays a role in the function of human GLTP.


Assuntos
Proteínas de Transporte/química , Metabolismo dos Lipídeos/fisiologia , Multimerização Proteica/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Cristalografia por Raios X , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/fisiologia , Humanos , Ligantes , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
11.
Structure ; 19(11): 1644-54, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22078563

RESUMO

Human glycolipid transfer protein (GLTP) fold represents a novel structural motif for lipid binding/transfer and reversible membrane translocation. GLTPs transfer glycosphingolipids (GSLs) that are key regulators of cell growth, division, surface adhesion, and neurodevelopment. Herein, we report structure-guided engineering of the lipid binding features of GLTP. New crystal structures of wild-type GLTP and two mutants (D48V and A47D‖D48V), each containing bound N-nervonoyl-sulfatide, reveal the molecular basis for selective anchoring of sulfatide (3-O-sulfo-galactosylceramide) by D48V-GLTP. Directed point mutations of "portal entrance" residues, A47 and D48, reversibly regulate sphingosine access to the hydrophobic pocket via a mechanism that could involve homodimerization. "Door-opening" conformational changes by phenylalanines within the hydrophobic pocket are revealed during lipid encapsulation by new crystal structures of bona fide apo-GLTP and GLTP complexed with N-oleoyl-glucosylceramide. The development of "engineered GLTPs" with enhanced specificity for select GSLs provides a potential new therapeutic approach for targeting GSL-mediated pathologies.


Assuntos
Proteínas de Transporte/química , Sulfoglicoesfingolipídeos/química , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Especificidade por Substrato , Propriedades de Superfície
12.
Carcinogenesis ; 27(9): 1787-96, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16569656

RESUMO

Previously, we found that the H1 histamine receptor antagonist diphenhydramine induces apoptosis in human acute T-lymphocytic leukemia cells. Since histamine has been shown to act as a growth factor in malignant melanoma cells, we decided to evaluate the in vitro effect of diphenhydramine and other H1 histamine receptor antagonists, such as terfenadine, astemizol and triprolidine on four malignant human melanoma cell lines. These antagonists were found to induce apoptotic cell death in all four melanoma cell lines. Apoptosis was determined by assessment of phosphatidylserine exposure on the surface of the cells and nuclear fragmentation. Importantly, H1 antagonist treatments did not adversely affect the viability of human melanocytes and murine fibroblasts at the same doses and duration of exposure. Treatment of melanoma cells with terfenadine induced DNA damage and caspases 2, 3, 6, 8 and 9 activation. Furthermore, the general caspase inhibitor (z-VAD-FMK) and a selective inhibitor of caspase-2 (z-VDVAD-FMK) protected melanoma cells from terfenadine-induced apoptosis. In contrast, the caspase-8 inhibitor (z-IETD-FMK) was ineffective. In addition, we found that mitochondria are involved in TEF-induced apoptosis, characterized by the dissipation of the mitochondrial transmembrane potential, the release of cytochrome c into the cytosolic compartment and caspase-9 activation. On the basis of these results we conclude that H1 histamine receptor antagonists induce apoptosis in human melanoma cells but not in normal melanocytes and embryonic murine fibroblasts; this apoptosis appears to be caspase-2-dependent and involves the mitochondrial pathway. The present results may contribute to the elaboration of novel therapeutic strategies for the treatment of malignant human melanoma.


Assuntos
Apoptose , Caspases/biossíntese , Regulação Neoplásica da Expressão Gênica , Antagonistas dos Receptores Histamínicos H1/farmacologia , Melanoma/metabolismo , Caspase 2 , Linhagem Celular Tumoral , Citosol/metabolismo , Dano ao DNA , Ativação Enzimática , Fibroblastos/metabolismo , Histamina/metabolismo , Humanos , Melanócitos/metabolismo , Mutagênicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA