Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Lancet Infect Dis ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723650

RESUMO

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.

2.
J Infect Dis ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438123

RESUMO

BACKGROUND: The RTS, S/AS01E malaria vaccine (RTS, S) is recommended for children in moderate-to-high Plasmodium falciparum malaria transmission areas. This phase 2b trial (NCT03276962) evaluates RTS, S fractional- and full-dose regimens in Ghana and Kenya. METHODS: 1500 children aged 5-17 months were randomised (1:1:1:1:1) to receive RTS, S or rabies control vaccine. RTS, S groups received two full RTS, S doses at month (M)0/M1 followed by either full (groups R012-20, R012-14-26) or fractional (1/5) doses (groups Fx012-14-26, Fx017-20-32). RESULTS: At M32 post-first dose, vaccine efficacy (VE) against clinical malaria (all episodes) ranged from 38% (R012-20; 95%CI: 24-49) to 53% (R012-14-26; 95%CI: 42-62). Vaccine impact estimates (cumulative number of malaria cases averted/1000 children vaccinated) were 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional- versus full-dose), in a post-hoc analysis, we also estimated cases averted/1000 RTS, S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), 880 (Fx017-20-32). CONCLUSIONS: VE against clinical malaria was similar in all RTS, S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If borne out through trial end (M50), these observations underscore the means to reduce cost per regimen with a goal of maximising impact and optimising supply.

3.
Nat Med ; 30(1): 117-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38167935

RESUMO

Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria. Here we characterize the circulating B cell repertoires of 45 RTS,S/AS01 vaccinees and discover monoclonal antibodies for development as potential therapeutics. We generated >28,000 antibody sequences and tested 481 antibodies for binding activity and 125 antibodies for antimalaria activity in vivo. Through these analyses we identified correlations suggesting that sequences in Plasmodium falciparum circumsporozoite protein, the target antigen in RTS,S/AS01, may induce immunodominant antibody responses that limit more protective, but subdominant, responses. Using binding studies, mouse malaria models, biomanufacturing assessments and protein stability assays, we selected AB-000224 and AB-007088 for advancement as a clinical lead and backup. We engineered the variable domains (Fv) of both antibodies to enable low-cost manufacturing at scale for distribution to pediatric populations, in alignment with WHO's preferred product guidelines. The engineered clone with the optimal manufacturing and drug property profile, MAM01, was advanced into clinical development.


Assuntos
Anticorpos Monoclonais , Malária , Animais , Pré-Escolar , Humanos , Lactente , Camundongos , Anticorpos Monoclonais/uso terapêutico , Linfócitos B , Malária/prevenção & controle , Vacinas Antimaláricas
4.
Lancet Infect Dis ; 24(1): 75-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37625434

RESUMO

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Pré-Escolar , Mali/epidemiologia , Burkina Faso/epidemiologia , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Vacinação , Quimioprevenção , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle
5.
medRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045387

RESUMO

Background: The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results: We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions: All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).

6.
BMC Med ; 21(1): 137, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024868

RESUMO

BACKGROUND: Whole sporozoite immunization under chemoprophylaxis (CPS regime) induces long-lasting sterile homologous protection in the controlled human malaria infection model using Plasmodium falciparum strain NF54. The relative proficiency of liver-stage parasite development may be an important factor determining immunization efficacy. Previous studies show that Plasmodium falciparum strain NF135 produces relatively high numbers of large liver-stage schizonts in vitro. Here, we evaluate this strain for use in CPS immunization regimes. METHODS: In a partially randomized, open-label study conducted at the Radboudumc, Nijmegen, the Netherlands, healthy, malaria-naïve adults were immunized by three rounds of fifteen or five NF135-infected mosquito bites under mefloquine prophylaxis (cohort A) or fifteen NF135-infected mosquito bites and presumptive treatment with artemether/lumefantrine (cohort B). Cohort A participants were exposed to a homologous challenge 19 weeks after immunization. The primary objective of the study was to evaluate the safety and tolerability of CPS immunizations with NF135. RESULTS: Relatively high liver-to-blood inocula were observed during immunization with NF135 in both cohorts. Eighteen of 30 (60%) high-dose participants and 3/10 (30%) low-dose participants experienced grade 3 adverse events 7 to 21 days following their first immunization. All cohort A participants and two participants in cohort B developed breakthrough blood-stage malaria infections during immunizations requiring rescue treatment. The resulting compromised immunizations induced modest sterile protection against homologous challenge in cohort A (5/17; 29%). CONCLUSIONS: These CPS regimes using NF135 were relatively poorly tolerated and frequently required rescue treatment, thereby compromising immunization efficiency and protective efficacy. Consequently, the full potential of NF135 sporozoites for induction of immune protection remains inconclusive. Nonetheless, the high liver-stage burden achieved by this strain highlights it as an interesting potential candidate for novel whole sporozoite immunization approaches. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov under identifier NCT03813108.


Assuntos
Antimaláricos , Mordeduras e Picadas de Insetos , Vacinas Antimaláricas , Malária , Adulto , Animais , Humanos , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Imunização/métodos , Mordeduras e Picadas de Insetos/tratamento farmacológico , Malária/prevenção & controle , Vacinas Antimaláricas/efeitos adversos , Plasmodium falciparum , Esporozoítos
7.
Lancet Infect Dis ; 22(11): 1596-1605, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963275

RESUMO

BACKGROUND: Malaria elimination requires interruption of the highly efficient transmission of Plasmodium parasites by mosquitoes. TB31F is a humanised monoclonal antibody that binds the gamete surface protein Pfs48/45 and inhibits fertilisation, thereby preventing further parasite development in the mosquito midgut and onward transmission. We aimed to evaluate the safety and efficacy of TB31F in malaria-naive participants. METHODS: In this open-label, first-in-human, dose-escalation, phase 1 clinical trial, healthy, malaria-naive, adult participants were administered a single intravenous dose of 0·1, 1, 3, or 10 mg/kg TB31F or a subcutaneous dose of 100 mg TB31F, and monitored until day 84 after administration at a single centre in the Netherlands. The primary outcome was the frequency and magnitude of adverse events. Additionally, TB31F serum concentrations were measured by ELISA. Transmission-reducing activity (TRA) of participant sera was assessed by standard membrane feeding assays with Anopheles stephensi mosquitoes and cultured Plasmodium falciparum gametocytes. The trial is registered with Clinicaltrials.gov, NCT04238689. FINDINGS: Between Feb 17 and Dec 10, 2020, 25 participants were enrolled and sequentially assigned to each dose (n=5 per group). No serious or severe adverse events occurred. In total, 33 grade 1 and six grade 2 related adverse events occurred in 20 (80%) of 25 participants across all groups. Serum of all participants administered 1 mg/kg, 3 mg/kg, or 10 mg/kg TB31F intravenously had more than 80% TRA for 28 days or more, 56 days or more, and 84 days or more, respectively. The TB31F serum concentration reaching 80% TRA was 2·1 µg/mL (95% CI 1·9-2·3). Extrapolating the duration of TRA from antibody kinetics suggests more than 80% TRA is maintained for 160 days (95% CI 136-193) following a single intravenous 10 mg/kg dose. INTERPRETATION: TB31F is a well tolerated and highly potent monoclonal antibody capable of completely blocking transmission of P falciparum parasites from humans to mosquitoes. In areas of seasonal transmission, a single dose might cover an entire malaria season. FUNDING: PATH's Malaria Vaccine Initiative.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Adulto , Animais , Humanos , Plasmodium falciparum , Anticorpos Monoclonais/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia
8.
Clin Microbiol Rev ; 35(3): e0000821, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35862754

RESUMO

The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.


Assuntos
Modelos Biológicos , Desenvolvimento de Vacinas , Ensaios Clínicos Fase III como Assunto , Controle de Doenças Transmissíveis , Humanos , Vacinas
9.
Lancet Infect Dis ; 22(9): 1329-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753316

RESUMO

BACKGROUND: Controlled infection studies in malaria-naive adults suggest increased vaccine efficacy for fractional-dose versus full-dose regimens of RTS,S/AS01. We report first results of an ongoing trial assessing different fractional-dose regimens in children, in natural exposure settings. METHODS: This open-label, phase 2b, randomised controlled trial is conducted at the Malaria Research Center, Agogo, Ashanti Region (Ghana), and the Kenya Medical Research Institute and the US Centers for Disease Control and Prevention site in Siaya County (Kenya). We enrolled children aged 5-17 months without serious acute or chronic illness who had previously received three doses of diphtheria, tetanus, pertussis, and hepatitis B vaccine and at least three doses of oral polio vaccine. Children were randomly assigned (1:1:1:1:1) using a web-based randomisation system with a minimisation procedure accounting for centre to receive rabies control vaccine (M012 schedule) or two full doses of RTS,S/AS01E at month 0 and month 1, followed by either full doses at months 2 and 20 (group R012-20 [standard regimen]), full doses at months 2, 14, 26, and 38 (R012-14), fractional doses at months 2, 14, 26, and 38 (Fx012-14), or fractional doses at months 7, 20, and 32 (Fx017-20). The fractional doses were administered as one fifth (0·1 mL) of the full RTS,S dose (0·5 mL) after reconstitution. All vaccines were administered by intramuscular injection in the left deltoid. The primary outcome was occurrence of clinical malaria cases from month 2·5 until month 14 for the Fx012-14 group versus the pooled R012-14 and R012-20 groups in the per-protocol set. We assessed incremental vaccine efficacy of the Fx012-14 group versus the pooled R012-14 and R012-20 group over 12 months after dose three. Safety was assessed in all children who received at least one vaccine dose. This trial is registered with ClinicalTrials.gov, NCT03276962. FINDINGS: Between Sept 28, 2017, and Sept 25, 2018, 2157 children were enrolled, of whom 1609 were randomly assigned to a treatment group (322 to each RTS,S/AS01E group and 321 to the rabies vaccine control group). 1500 children received at least one study vaccine dose and the per-protocol set comprised 1332 children. Over 12 months after dose three, the incremental vaccine efficacy in the Fx012-14 group versus the pooled R012-14 and R12-20 groups was -21% (95% CI -57 to 7; p=0·15). Up to month 21, serious adverse events occurred in 48 (16%) of 298 children in the R012-20 group, 45 (15%) of 294 in the R012-14 group, 47 (15%) of 304 in the Fx012-14 group, 62 (20%) of 311 in the Fx017-20 group, and 71 (24%) of 293 in the control group, with no safety signals observed. INTERPRETATION: The Fx012-14 regimen was not superior to the standard regimen over 12 months after dose three. All RTS,S/AS01E regimens provided substantial, similar protection against clinical malaria, suggesting potential flexibility in the recommended dosing regimen and schedule. This, and the effect of annual boosters, will be further evaluated through 50 months of follow-up. FUNDING: GlaxoSmithKline Biologicals; PATH's Malaria Vaccine Initiative.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Vacina Antirrábica , Adulto , Criança , Gana , Humanos , Quênia
10.
EBioMedicine ; 77: 103919, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35278741

RESUMO

BACKGROUND: Fever and inflammation are a hallmark of clinical Plasmodium falciparum (Pf) malaria induced by circulating asexual parasites. Although clinical manifestations of inflammation are associated with parasite density, this relationship is influenced by a complex network of immune-modulating factors of both human and parasite origin. METHODS: In the Controlled Human Malaria infection (CHMI) model, we compared clinical inflammation in healthy malaria-naïve volunteers infected by either Pf-infected mosquito bites (MB, n=12) or intravenous administration of Pf-infected red blood cells (BS, n=12). FINDINGS: All volunteers developed patent parasitaemia, but both the incidence and duration of severe adverse events were significantly higher after MB infection. Similarly, clinical laboratory markers of inflammation were significantly increased in the MB-group, as well as serum pro-inflammatory cytokine concentrations including IFN-γ, IL-6, MCP1 and IL-8. Parasite load, as reflected by maximum parasite density and area under the curve, was similar, but median duration of parasitaemia until treatment was longer in the BS-group compared to the MB-group (8 days [range 8 - 8 days] versus 5·5 days [range 3·5 - 12·5 days]). The in vitro response of subsets of peripheral blood mononuclear cells showed attenuated Pf-specific IFNγ production by γδ T-cells in the BS-arm. INTERPRETATION: In conclusion, irrespective the parasite load, Pf-infections by MB induce stronger signs and symptoms of inflammation compared to CHMI by BS infection. The pathophysiological basis remains speculative but may relate to induced immune tolerance. FUNDING: The trial was supported by PATH's Malaria Vaccine Initiative; the current analyses were supported by the AMMODO Science Award 2019 (TB).


Assuntos
Mordeduras e Picadas de Insetos , Malária Falciparum , Malária , Humanos , Leucócitos Mononucleares , Malária/complicações , Malária Falciparum/parasitologia , Plasmodium falciparum
11.
Malar J ; 21(1): 77, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264158

RESUMO

The populations of moderate or highly malaria endemic areas gradually acquire some immunity to malaria as a result of repeated exposure to the infection. When this exposure is reduced as a result of effective malaria control measures, subjects who benefitted from the intervention may consequently be at increased risk of malaria if the intervention is withdrawn, especially if this is done abruptly, and an effective malaria vector remains. There have been many examples of this occurring in the past, a phenomenon often termed 'rebound malaria', with the incidence of malaria rebounding to the level present before the intervention was introduced. Because the main clinical burden of malaria in areas with a high level of malaria transmission is in young children, malaria control efforts have, in recent decades, focussed on this group, with substantial success being obtained with interventions such as insecticide treated mosquito nets, chemoprevention and, most recently, malaria vaccines. These are interventions whose administration may not be sustained. This has led to concerns that in these circumstances, the overall burden of malaria in children may not be reduced but just delayed, with the main period of risk being in the period shortly after the intervention is no longer given. Although dependent on the same underlying process as classical 'resurgent' malaria, it may be helpful to differentiate the two conditions, describing the later as 'delayed malaria'. In this paper, some of the evidence that delayed malaria occurs is discussed and potential measures for reducing its impact are suggested.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Malária , Animais , Criança , Pré-Escolar , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores
12.
Malar J ; 21(1): 59, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193608

RESUMO

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Burkina Faso/epidemiologia , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Mali/epidemiologia , Estado Nutricional , Estações do Ano , Vacinação
13.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894221

RESUMO

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Formação de Anticorpos , Criança , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Estações do Ano , Vacinação
14.
Vaccine ; 39(43): 6398-6406, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593270

RESUMO

BACKGROUND: We previously demonstrated that RTS,S/AS01B and RTS,S/AS01E vaccination regimens including at least one delayed fractional dose can protect against Plasmodium falciparum malaria in a controlled human malaria infection (CHMI) model, and showed inferiority of a two-dose versus three-dose regimen. In this follow-on trial, we evaluated whether fractional booster vaccination extended or induced protection in previously protected (P-Fx) or non-protected (NP-Fx) participants. METHODS: 49 participants (P-Fx: 25; NP-Fx: 24) received a fractional (1/5th dose-volume) RTS,S/AS01E booster 12 months post-primary regimen. They underwent P. falciparum CHMI three weeks later and were then followed for six months for safety and immunogenicity. RESULTS: Overall vaccine efficacy against re-challenge was 53% (95% CI: 37-65%), and similar for P-Fx (52% [95% CI: 28-68%]) and NP-Fx (54% [95% CI: 29-70%]). Efficacy appeared unaffected by primary regimen or previous protection status. Anti-CS (repeat region) antibody geometric mean concentrations (GMCs) increased post-booster vaccination. GMCs were maintained over time in primary three-dose groups but declined in the two-dose group. Protection after re-challenge was associated with higher anti-CS antibody responses. The booster was well-tolerated. CONCLUSIONS: A fractional RTS,S/AS01E booster given one year after completion of a primary two- or three-dose RTS,S/AS01 delayed fractional dose regimen can extend or induce protection against CHMI. CLINICAL TRIAL REGISTRATION: NCT03824236. linked to this article can be found on the Research Data as well as Figshare https://figshare.com/s/ee025150f9d1ac739361.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinação
15.
N Engl J Med ; 385(11): 1005-1017, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432975

RESUMO

BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.).


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Vacinas Antimaláricas , Malária Falciparum/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Antimaláricos/efeitos adversos , Burkina Faso/epidemiologia , Quimioprevenção , Terapia Combinada , Método Duplo-Cego , Combinação de Medicamentos , Quimioterapia Combinada , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/epidemiologia , Malária Falciparum/mortalidade , Masculino , Mali/epidemiologia , Estações do Ano , Convulsões Febris/etiologia
16.
Front Big Data ; 4: 672460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212134

RESUMO

RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit-with this dataset-in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a "quality as well as quantity" hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.

17.
J Infect Dis ; 224(7): 1257-1265, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32239171

RESUMO

BACKGROUND: For malaria elimination efforts, it is important to better understand parasite transmission to mosquitoes and develop models for early-clinical evaluation of transmission-blocking interventions. METHODS: In a randomized open-label trial, 24 participants were infected by bites from Plasmodium falciparum 3D7-infected mosquitoes (mosquito bite [MB]; n = 12) or by induced blood-stage malaria (IBSM) with the same parasite line (n = 12). After subcurative piperaquine treatment, asexual parasite and gametocytes kinetics were assessed, and mosquito feeding experiments were performed. RESULTS: Study procedures were well tolerated. The median peak gametocyte density was 1304/mL (interquartile range, 308-1607/mL) after IBSM, compared with 14/mL (10-64/mL) after MB inoculation (P < .001), despite similar peak asexual parasite densities (P = .48). Peak gametocyte density was correlated with preceding pfap2-g transcripts, indicative of gametocyte commitment (ρ = 0.62; P = .002). Direct feeding assays resulted in mosquito infections from 9 of 12 participants after IBSM versus 0 of 12 after MB inoculation (P < .001). CONCLUSIONS: We observed a striking effect of inoculation method on gametocyte production, suggesting higher gametocyte commitment after IBSM. Our direct comparison of MB and IBSM establishes the controlled human malaria infection transmission model, using intravenous administration of P. falciparum-infected erythrocytes as a model for early-clinical evaluation of interventions that aim to interrupt malaria transmission. CLINICAL TRIAL REGISTRATION: NCT03454048.


Assuntos
Anopheles/parasitologia , Mordeduras e Picadas de Insetos , Malária Falciparum/sangue , Plasmodium falciparum/isolamento & purificação , Adolescente , Animais , Feminino , Humanos , Malária , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Parasitemia
18.
Trials ; 21(1): 853, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059771

RESUMO

OBJECTIVES: To evaluate the efficacy of two doses of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac in symptomatic individuals, with virological confirmation of COVID-19, two weeks after the completion of the two-dose vaccination regimen, aged 18 years or older who work as health professionals providing care to patients with possible or confirmed COVID-19. To describe the occurrence of adverse reactions associated with the administration of each of two doses of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac up to one week after vaccination in Adults (18-59 years of age) and Elderly (60 years of age or more). TRIAL DESIGN: This is a Phase III, randomized, multicenter, endpoint driven, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac. The adsorbed vaccine COVID-19 (inactivated) produced by Sinovac (product under investigation) will be compared to placebo. Voluntary participants will be randomized to receive two intramuscular doses of the investigational product or the placebo, in a 1: 1 ratio, stratified by age group (18 to 59 years and 60 years or more) and will be monitored for one year by active surveillance of COVID-19. Two databases will be established according to the age groups: one for adults (18-59 years) and one for the elderly (60 years of age or older). The threshold to consider the vaccine efficacious will be to reach a protection level of at least 50%, as proposed by the World Health Organization and the FDA. Success in this criterion will be defined by sequential monitoring with adjustment of the lower limit of the 95% confidence interval above 30% for the primary efficacy endpoint. PARTICIPANTS: Healthy participants and / or participants with clinically controlled disease, of both genders, 18 years of age or older, working as health professionals performing care in units specialized in direct contact with people with possible or confirmed cases of COVID-19. Participation of pregnant women and those who are breastfeeding, as well as those intending to become pregnant within three months after vaccination will not be allowed. Participants will only be included after signing the voluntary Informed Consent Form and ensuring they undergo screening evaluation and conform to all the inclusion and exclusion criteria. All the clinical sites are located in Brazil. INTERVENTION AND COMPARATOR: Experimental intervention: The vaccine was manufactured by Sinovac Life Sciences (Beijing, China) and contains 3 µg/0.5 mL (equivalent to 600 SU per dose) of inactivated SARS-CoV-2 virus, and aluminium hydroxide as adjuvant. Control comparator: The placebo contains aluminium hydroxide in a 0.5 mL solution The schedule of both, experimental intervention and placebo is two 0.5 mL doses IM (deltoid) with a two week interval. MAIN OUTCOMES: The primary efficacy endpoint is the incidence of symptomatic cases of virologically confirmed COVID-19 two weeks after the second vaccination. The virological diagnosis will be confirmed by detection of SARS-CoV-2 nucleic acid in a clinical sample. The primary safety endpoint is the frequency of solicited and unsolicited local and systemic adverse reactions during the period of one week after vaccination according to age group in adult (18-59 years old) and elder (60 years of age or older) subjects. Adverse reactions are defined as adverse events that have a reasonable causal relationship to vaccination. RANDOMISATION: There will be two randomization lists, one for each age group, based on the investigational products to be administered, i.e., vaccine or placebo at a 1: 1 ratio. Each randomization list will be made to include up to 11,800 (18-59 year-old) adults, and 1,260 elderly (60 y-o and older) participants, the maximum number of participants needed per age group. An electronic central randomization system will be used to designate the investigational product that each participant must receive. BLINDING (MASKING): This trial is designed as a double-blind study to avoid introducing bias in the evaluation of efficacy, safety and immunogenicity. The clinical care team, the professionals responsible for the vaccination and the participants will not know which investigational product will be administered. Only pharmacists or nurses in the study who are responsible for the randomization, separation and blinding of the investigational product will have access to unblinded information. The sponsor's operational team will also remain blind. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The total number of participants needed to evaluate efficacy, 13,060 participants, satisfies the needed sample size calculated to evaluate safety. Therefore, the total number obtained for efficacy will be the number retained for the study. Up to 13,060 participants are expected to enter the study, with up to 11,800 participants aged 18 to 59 years and 1,260 elderly participants aged 60 and over. Half of the participants of each group will receive the experimental vaccine and half of them will receive the placebo. The recruitment of participants may be modified as recommended by the Data Safety Monitoring Committee at time of the interim unblinded analysis or blind assessment of the COVID-19 attack rate during the study. TRIAL STATUS: Protocol version 2.0 - 24-Aug-2020. Recruitment started on July 21st, 2020. The recruitment is expected to conclude in October 2020. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0445659 . Registry on 2 July 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinação/métodos , Vacinas/uso terapêutico , Adolescente , Adulto , Idoso , Betacoronavirus/imunologia , Brasil/epidemiologia , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Gerenciamento de Dados , Método Duplo-Cego , Feminino , Pessoal de Saúde/estatística & dados numéricos , Humanos , Incidência , Consentimento Livre e Esclarecido/ética , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Segurança , Terapias em Estudo/métodos , Resultado do Tratamento , Vacinas/administração & dosagem , Vacinas/efeitos adversos , Adulto Jovem
19.
Vaccine ; 38(47): 7498-7507, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33041104

RESUMO

Anti-circumsporozoite antibody titres have been established as an essential indicator for evaluating the immunogenicity and protective capacity of the RTS,S/AS01 malaria vaccine. However, a new delayed-fractional dose regime of the vaccine was recently shown to increase vaccine efficacy, from 62.5% (95% CI 29.4-80.1%) under the original dosing schedule to 86.7% (95% CI, 66.8-94.6%) without a corresponding increase in antibody titres. Here we reanalyse the antibody data from this challenge trial to determine whether IgG avidity may help to explain efficacy better than IgG titre alone by adapting a within-host mathematical model of sporozoite inoculation. We demonstrate that a model incorporating titre and avidity provides a substantially better fit to the data than titre alone. These results also suggest that in individuals with a high antibody titre response that also show high avidity (both metrics in the top tercile of observed values) delayed-fractional vaccination provided near perfect protection upon first challenge (98.2% [95% Credible Interval 91.6-99.7%]). This finding suggests that the quality of the vaccine induced antibody response is likely to be an important determinant in the development of highly efficacious pre-erythrocytic vaccines against malaria.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Formação de Anticorpos , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA