Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945646

RESUMO

Arginine-specific mono-ADP-ribosylation is a reversible post-translational modification; arginine-specific, cholera toxin-like mono-ADP-ribosyltransferases (ARTCs) transfer ADP-ribose from NAD + to arginine, followed by cleavage of ADP-ribose-(arginine)protein bond by ADP-ribosylarginine hydrolase 1 (ARH1), generating unmodified (arginine)protein. ARTC1 has been shown to enhance tumorigenicity as does Arh1 deficiency. In this study, Artc1 -KO and Artc1/Arh1 -double-KO mice showed decreased spontaneous tumorigenesis and increased age-dependent, multi-organ inflammation with upregulation of pro-inflammatory cytokine TNF- α . In a xenograft model using tumorigenic Arh1 -KO mouse embryonic fibroblasts (MEFs), tumorigenicity was decreased in Artc1 -KO and heterozygous recipient mice, with tumor infiltration by CD8 + T cells and macrophages, leading to necroptosis, suggesting that ARTC1 promotes the tumor microenvironment. Furthermore, Artc1/Arh1 -double-KO MEFs showed decreased tumorigenesis in nude mice, showing that tumor cells as well as tumor microenvironment require ARTC1. By echocardiography and MRI, Artc1 -KO and heterozygous mice showed male-specific, reduced myocardial contractility. Furthermore, Artc1 -KO male hearts exhibited enhanced susceptibility to myocardial ischemia-reperfusion-induced injury with increased receptor-interacting protein kinase 3 (RIP3) protein levels compared to WT mice, suggesting that ARTC1 suppresses necroptosis. Overall survival rate of Artc1 -KO was less than their Artc1 -WT counterparts, primarily due to enhanced immune response and inflammation. Thus, anti-ARTC1 agents may reduce tumorigenesis but may increase multi-organ inflammation and decrease cardiac contractility.

2.
ACS Chem Biol ; 14(12): 2576-2584, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31599159

RESUMO

ADP-ribosyltransferases transfer ADP-ribose from ß-NAD+ to acceptors; ADP-ribosylated acceptors are cleaved by ADP-ribosyl-acceptor hydrolases (ARHs) and proteins containing ADP-ribose-binding modules termed macrodomains. On the basis of the ADP-ribosyl-arginine hydrolase 1 (ARH1) stereospecific hydrolysis of α-ADP-ribosyl-arginine and the hypothesis that α-NAD+ is generated as a side product of ß-NAD+/ NADH metabolism, we proposed that α-NAD+ was a substrate of ARHs and macrodomain proteins. Here, we report that ARH1, ARH3, and macrodomain proteins (i.e., MacroD1, MacroD2, C6orf130 (TARG1), Af1521, hydrolyzed α-NAD+ but not ß-NAD+. ARH3 had the highest α-NADase specific activity. The ARH and macrodomain protein families, in stereospecific reactions, cleave ADP-ribose linkages to N- or O- containing functional groups; anomerization of α- to ß-forms (e.g., α-ADP-ribosyl-arginine to ß-ADP-ribose- (arginine) protein) may explain partial hydrolysis of ADP-ribosylated acceptors with an increase in content of ADP-ribosylated substrates. Af1521 and ARH3 crystal structures with bound ADP-ribose revealed similar ADP-ribose-binding pockets with the catalytic residues of the ARH and macrodomain protein families in the N-terminal helix and loop. Although the biological roles of the ARHs and macrodomain proteins differ, they share enzymatic and structural properties that may regulate metabolites such as α-NAD+.


Assuntos
Adenosina Difosfato Ribose/metabolismo , NAD/metabolismo , ADP-Ribosilação , Animais , Catálise , Células Cultivadas , Humanos , Hidrólise , Camundongos
3.
Dent Mater J ; 38(6): 909-920, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31366769

RESUMO

Corrosion of metallic materials in the oral cavity could trigger metal allergy in patients. To clarify the risk elevation of magnetic fields (MFs) exposure on metallic corrosion when combined with fluoride-containing dental care products and indigenous oral bacteria, we investigated electric toothbrush-derived MF-induced corrosion of orthodontic stainless steel (SUS) and nickel titanium (Ni-Ti) wires in the presence of fluoride and oral bacteria, i.e. Streptococcus (S) mutans and S. sanguinis. MFs induced an electric current in the wires under both environments. Oral bacteria corroded SUS wires, and fluoride corroded SUS and Ni-Ti wires as previously reported; however, no additive or synergistic effects of MF exposure on fluoride- and microbiologically-induced metallic corrosion were observed. These results suggest that the MFs from electric toothbrushes do not increase the risk of corrosion of metallic appliances, given that the oral environment of patients is exposed to oral bacteria and fluoride-containing products.


Assuntos
Fluoretos , Fios Ortodônticos , Bactérias , Corrosão , Ligas Dentárias , Humanos , Campos Magnéticos , Teste de Materiais , Propriedades de Superfície , Titânio
4.
PLoS One ; 13(11): e0207693, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30500844

RESUMO

Cholera toxin, an 84-kDa multimeric protein and a major virulence factor of Vibrio cholerae, uses the ADP-ribosyltransferase activity of its A subunit to intoxicate host cells. ADP-ribosylation is a posttranslational modification of proteins, in which the ADP-ribose moiety of NAD+ is transferred to an acceptor. In mammalian cells, ADP-ribosylation of acceptors appears to be reversible. ADP-ribosyltransferases (ARTs) catalyze the modification of acceptor proteins, and ADP-ribose-acceptor hydrolases (ARHs) cleave the ADP-ribose-acceptor bond. ARH1 specifically cleaves the ADP-ribose-arginine bond. We previously demonstrated a role for endogenous ARH1 in regulating the extent of cholera toxin-mediated fluid and electrolyte abnormalities in a mouse model of intoxication. Murine ARH1-knockout (KO) cells and ARH1-KO mice exhibited increased sensitivity to cholera toxin compared to their wild-type (WT) counterparts. In the current report, we examined the sensitivity to cholera toxin of male and female ARH1-KO and WT mice. Intestinal loops derived from female ARH1-KO mice when injected with cholera toxin showed increased fluid accumulation compared to male ARH1-KO mice. WT mice did not show gender differences in fluid accumulation, ADP-ribosylarginine content, and ADP-ribosyl Gαs levels. Injection of 8-Bromo-cAMP into the intestinal loops also increased fluid accumulation, however, there was no significant difference between female and male mice or in WT and KO mice. Female ARH1-KO mice showed greater amounts of ADP-ribosylated Gαs protein and increased ADP-ribosylarginine content both in whole intestine and in epithelial cells than did male ARH1-KO mice. These results demonstrate that female ARH1-KO mice are more sensitive to cholera toxin than male mice. Loss of ARH1 confers gender sensitivity to the effects of cholera toxin but not of cyclic AMP. These observations may in part explain the finding noted in some clinical reports of enhanced symptoms of cholera and/or diarrhea in women than men.


Assuntos
Líquidos Corporais/metabolismo , Toxina da Cólera/metabolismo , Mucosa Intestinal/metabolismo , N-Glicosil Hidrolases/deficiência , Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/metabolismo , Animais , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Mucosa Intestinal/citologia , Masculino , Camundongos Knockout , N-Glicosil Hidrolases/genética , Fatores Sexuais , Vibrio cholerae/metabolismo
5.
Dent Mater J ; 33(2): 187-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24583645

RESUMO

Biocorrosion (microbiologically influenced corrosion; MIC) occur in aquatic habitats varying in nutrient content, temperature, stress and pH. The oral environment of organisms, including humans, should be one of the most hospitable for MIC. Corrosion of metallic appliances in the oral region is one cause of metal allergy in patients. In this study, an inductively coupled plasma-optical emission spectrometer revealed elution of Fe, Cr and Ni from stainless steel (SUS) appliances incubated with oral bacteria. Three-dimensional laser confocal microscopy also revealed that oral bacterial culture promoted increased surface roughness and corrosion pits in SUS appliances. The pH of the supernatant was lowered after co-culture of appliances and oral bacteria in any combinations, but not reached at the level of depassivation pH of their metallic materials. This study showed that Streptococcus mutans and Streptococcus sanguinis which easily created biofilm on the surfaces of teeth and appliances, did corrode orthodontic SUS appliances.


Assuntos
Bactérias/metabolismo , Corrosão , Metais , Aparelhos Ortodônticos , Humanos , Boca/microbiologia
6.
Odontology ; 102(2): 284-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23744363

RESUMO

Air polishing is known as an effective and time saving tooth cleaning method. However, this method increased surface roughness and bacterial adhesion on dentin surface. The aim of this study was to characterize and examine Streptococcus mutans adhesion on dentin surface after air polishing as compared to the conventional method. The dentin blocks (4 × 4 × 1 mm) were polished by a rubber cup with polishing material (Polishing) and air-polished by 25 µm glycine (G25), 65 µm glycine (G65), and 65 µm sodium bicarbonate (NHC65) microparticles. Surface roughness (Ra) was measured by a laser electron microscope. The amount of adhered S. mutans was quantified using a resazurin reduction assay (alamarBlue(®)). The Ra of G25 and G65 was significantly (p < 0.01) smaller than that of NHC65 and greater than that of Polishing. However, there was no significant difference in S. mutans adhesion among Polishing, G25, and G65, while NHC65 showed significantly (p < 0.01) higher S. mutans adhesion. Within the limitations of this in vitro study, air polishing using glycine microparticles conditioned S. mutans adhesion on dentin surface in a similar fashion than the conventional method, and less than air polishing using sodium bicarbonate microparticles.


Assuntos
Aderência Bacteriana , Polimento Dentário , Dentina/microbiologia , Streptococcus mutans/fisiologia , Adulto , Feminino , Humanos
7.
Dent Mater J ; 32(6): 959-69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24240898

RESUMO

Electric toothbrushes are widely used, and their electric motors have been reported to produce low-frequency electromagnetic fields that induced electric currents in metallic objects worn by the users. In this study, we showed that electric toothbrushes generated low-frequency magnetic fields (MFs) and induced electric currents in orthodontic appliances in artificial saliva (AS), which accelerated corrosion in stainless steel (SUS) appliances, but not in titanium (Ti) appliances; the corrosion was evaluated by using an inductively coupled plasma-optical emission spectrometer and a three-dimensional laser confocal microscope. The pH of AS used for appliance immersion did not change during or after MF exposure. These results suggested that MF-induced currents from electric toothbrushes could erode SUS appliances, but not Ti appliances, because of their high corrosion potentials. Further studies are required to clarify the mechanisms of metallic corrosion by induced currents in dental fields, which may trigger metal allergies in patients.


Assuntos
Corrosão , Eletricidade , Magnetismo , Aparelhos Ortodônticos , Aço Inoxidável/química , Titânio/química , Escovação Dentária/instrumentação , Concentração de Íons de Hidrogênio , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA