Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Cell Dev Biol ; 11: 1105460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009486

RESUMO

The dynamic assembly of actin is controlled by the hydrolysis of ATP, bound to the center of the molecule. Upon polymerization, actin undergoes a conformational change from the monomeric G-form to the fibrous F-form, which is associated with the flipping of the side chain of His161 toward ATP. His161 flipping from the gauche-minus to gauche-plus conformation leads to a rearrangement of the active site water molecules, including ATP attacking water (W1), into an orientation capable of hydrolysis. We previously showed that by using a human cardiac muscle α-actin expression system, mutations in the Pro-rich loop residues (A108G and P109A) and in a residue that was hydrogen-bonded to W1 (Q137A) affect the rate of polymerization and ATP hydrolysis. Here, we report the crystal structures of the three mutant actins bound to AMPPNP or ADP-Pi determined at a resolution of 1.35-1.55 Å, which are stabilized in the F-form conformation with the aid of the fragmin F1 domain. In A108G, His161 remained non-flipped despite the global actin conformation adopting the F-form, demonstrating that the side chain of His161 is flipped to avoid a steric clash with the methyl group of A108. Because of the non-flipped His161, W1 was located away from ATP, similar to G-actin, which was accompanied by incomplete hydrolysis. In P109A, the absence of the bulky proline ring allowed His161 to be positioned near the Pro-rich loop, with a minor influence on ATPase activity. In Q137A, two water molecules replaced the side-chain oxygen and nitrogen of Gln137 almost exactly at their positions; consequently, the active site structure, including the W1 position, is essentially conserved. This seemingly contradictory observation to the reported low ATPase activity of the Q137A filament could be attributed to a high fluctuation of the active site water. Together, our results suggest that the elaborate structural design of the active site residues ensures the precise control of the ATPase activity of actin.

2.
Proc Natl Acad Sci U S A ; 119(43): e2122641119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252034

RESUMO

The major cytoskeleton protein actin undergoes cyclic transitions between the monomeric G-form and the filamentous F-form, which drive organelle transport and cell motility. This mechanical work is driven by the ATPase activity at the catalytic site in the F-form. For deeper understanding of the actin cellular functions, the reaction mechanism must be elucidated. Here, we show that a single actin molecule is trapped in the F-form by fragmin domain-1 binding and present their crystal structures in the ATP analog-, ADP-Pi-, and ADP-bound forms, at 1.15-Å resolutions. The G-to-F conformational transition shifts the side chains of Gln137 and His161, which relocate four water molecules including W1 (attacking water) and W2 (helping water) to facilitate the hydrolysis. By applying quantum mechanics/molecular mechanics calculations to the structures, we have revealed a consistent and comprehensive reaction path of ATP hydrolysis by the F-form actin. The reaction path consists of four steps: 1) W1 and W2 rotations; 2) PG-O3B bond cleavage; 3) four concomitant events: W1-PO3- formation, OH- and proton cleavage, nucleophilic attack by the OH- against PG, and the abstracted proton transfer; and 4) proton relocation that stabilizes the ADP-Pi-bound F-form actin. The mechanism explains the slow rate of ATP hydrolysis by actin and the irreversibility of the hydrolysis reaction. While the catalytic strategy of actin ATP hydrolysis is essentially the same as those of motor proteins like myosin, the process after the hydrolysis is distinct and discussed in terms of Pi release, F-form destabilization, and global conformational changes.


Assuntos
Actinas , Prótons , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Dalteparina , Hidrólise , Miosinas/metabolismo , Água
3.
Biomolecules ; 10(5)2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397190

RESUMO

Depolymerization and polymerization of the actin filament are indispensable in eukaryotes. The DNase I binding loop (D-loop), which forms part of the interface between the subunits in the actin filament, is an intrinsically disordered loop with a large degree of conformational freedom. Introduction of the double mutation G42A/G46A to the D-loop of the beta cytoskeletal mammalian actin restricted D-loop conformational freedom, whereas changes to the critical concentration were not large, and no major structural changes were observed. Polymerization and depolymerization rates at both ends of the filament were reduced, and cofilin binding was inhibited by the double mutation. These results indicate that the two glycines at the tip of the D-loop are important for actin dynamics, most likely by contributing to the large degree of conformational freedom.


Assuntos
Actinas/genética , Actinas/metabolismo , Mutação/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/ultraestrutura , Actinas/ultraestrutura , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Polimerização , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/isolamento & purificação
4.
J Muscle Res Cell Motil ; 41(1): 153-162, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863323

RESUMO

Gelsolin superfamily proteins, consisting of multiple domains (usually six), sever actin filaments and cap the barbed ends in a Ca2+-dependent manner. Two types of evolutionally conserved Ca2+-binding sites have been identified in this family; type-1 (between gelsolin and actin) and type-2 (within the gelsolin domain). Fragmin, a member in the slime mold Physarum polycephalum, consists of three domains (F1-F3) that are highly similar to the N-terminal half of mammalian gelsolin (G1-G3). Despite their similarities, the two proteins exhibit a significant difference in the Ca2+ dependency; F1-F3 absolutely requires Ca2+ for the filament severing whereas G1-G3 does not. In this study, we examined the strong dependency of fragmin on Ca2+ using biochemical and structural approaches. Our co-sedimentation assay demonstrated that Ca2+ significantly enhanced the binding of F2-F3 to actin. We determined the crystal structure of F2-F3 in the presence of Ca2+. F2-F3 binds a total of three calcium ions; while two are located in type-2 sites within F2 or F3, the remaining one resides between the F2 long helix and the F3 short helix. The inter-domain Ca2+-coordination appears to stabilize F2-F3 in a closely packed configuration. Notably, the F3 long helix exhibits a bent conformation which is different from the straight G3 long helix in the presence of Ca2+. Our results provide the first structural evidence for the existence of an unconventional Ca2+-binding site in the gelsolin superfamily proteins.


Assuntos
Sítios de Ligação/fisiologia , Cálcio/metabolismo , Gelsolina/metabolismo , Humanos
5.
J Mol Biol ; 431(17): 3217-3228, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181287

RESUMO

Information on the structural polymorphism of a protein is essential to understand the mechanisms of how it functions at an atomic level. Numerous studies on actin have accumulated substantial amounts of information about its polymorphism, and there are over 200 published atomic structures of different forms of actin using crystallography, fiber diffraction, and electron microscopy. To characterize all the reported structures, we proposed simple parameters based on the discrete rigid bodies within the actin molecule and identified four conformation groups by cluster analysis: the F-form in naked F-actin, the C-form in cofilactin, the O-form in profilin-actin, and the G-form in the majority of actin-containing crystal structures. The G-form group included the most variations, but each conformational variation was convertible via a thermal fluctuation, whereas the F- and C-forms were not accessible from the G-form. The convertibility and accessibility of the structures were evaluated using molecular dynamics simulations. Information about conformational conversion among each group is useful for understanding the mechanisms of actin function.


Assuntos
Actinas/química , Actinas/metabolismo , Análise por Conglomerados , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Profilinas/química , Conformação Proteica , Domínios Proteicos
6.
Biophys Rev ; 10(6): 1513-1519, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30460458

RESUMO

Polymerization induces hydrolysis of ATP bound to actin, followed by γ-phosphate release, which helps advance the disassembly of actin filaments into ADP-G-actin. Mechanical understanding of this correlation between actin assembly and ATP hydrolysis has been an object of intensive studies in biochemistry and structural biology for many decades. Although actin polymerization and depolymerization occur only at either the barbed or pointed ends and the kinetic and equilibrium properties are substantially different from each other, characterizing their properties is difficult to do by bulk assays, as these assays report the average of all actin filaments in solution and are therefore not able to discern the properties of individual actin filaments. Biochemical studies of actin polymerization and hydrolysis were hampered by these inherent properties of actin filaments. Total internal reflection fluorescence (TIRF) microscopy overcame this problem by observing single actin filaments. With TIRF, we now know not only that each end has distinct properties, but also that the rate of γ-phosphate release is much faster from the terminals than from the interior of actin filaments. The rate of γ-phosphate release from actin filament ends is even more accelerated when latrunculin A is bound. These findings highlight the importance of resolving structural differences between actin molecules in the interior of the filament and those at either filament end. This review provides a history of observing actin filaments under light microscopy, an overview of dynamic properties of ATP hydrolysis at the end of actin filament, and structural views of γ-phosphate release.

7.
Nat Commun ; 9(1): 1860, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29749375

RESUMO

Actin depolymerizing factor (ADF) and cofilin accelerate actin dynamics by severing and disassembling actin filaments. Here, we present the 3.8 Å resolution cryo-EM structure of cofilactin (cofilin-decorated actin filament). The actin subunit structure of cofilactin (C-form) is distinct from those of F-actin (F-form) and monomeric actin (G-form). During the transition between these three conformations, the inner domain of actin (subdomains 3 and 4) and the majority of subdomain 1 move as two separate rigid bodies. The cofilin-actin interface consists of three distinct parts. Based on the rigid body movements of actin and the three cofilin-actin interfaces, we propose models for the cooperative binding of cofilin to actin, preferential binding of cofilin to ADP-bound actin filaments and cofilin-mediated severing of actin filaments.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/ultraestrutura , Cofilina 2/ultraestrutura , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Cofilina 2/isolamento & purificação , Cofilina 2/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
8.
Sci Rep ; 6: 34539, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775032

RESUMO

Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells.


Assuntos
Actinas/química , Proteínas Musculares/química , Polimerização , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Algoritmos , Animais , Galinhas , Cinética , Multimerização Proteica , Termodinâmica
9.
Proc Natl Acad Sci U S A ; 113(9): E1200-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26873105

RESUMO

Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule.


Assuntos
Actinas/metabolismo , Bacillus thuringiensis/metabolismo , DNA Bacteriano/metabolismo , Nanotubos , Plasmídeos , Bacillus thuringiensis/genética , Proteínas de Fluorescência Verde/genética
10.
Biochem Biophys Rep ; 6: 220-225, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955880

RESUMO

Hydration water is essential for a protein to perform its biological function properly. In this study, the dynamics of hydration water around F-actin and myosin subfragment-1 (S1), which are the partner proteins playing a major role in various cellular functions related to cell motility including muscle contraction, was characterized by incoherent quasielastic neutron scattering (QENS). The QENS measurements on the D2O- and H2O-solution samples of F-actin and S1 provided the spectra of hydration water, from which the translational diffusion coefficient (DT), the residence time (τT), and the rotational correlation time (τR) were evaluated. The DT value of the hydration water of S1 was found to be much smaller than that of the hydration water of F-actin while the τT values were similar between S1 and F-actin. On the other hand, the τR values of the hydration water of S1 was found to be larger than that of the hydration water of F-actin. It was also found that the DT and τR values of the hydration water of F-actin are similar to those of bulk water. These results suggest a significant difference in mobility of the hydration water between S1 and F-actin: S1 has the typical hydration water, the mobility of which is reduced compared with that of bulk water, while F-actin has the unique hydration water, the mobility of which is close to that of bulk water rather than the typical hydration water around proteins.

11.
Biochem Biophys Res Commun ; 459(3): 493-7, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25747714

RESUMO

Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than for S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1.


Assuntos
Actinas/química , Actinas/metabolismo , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Animais , Movimento Celular/fisiologia , Galinhas , Elasticidade , Simulação de Dinâmica Molecular , Difração de Nêutrons , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Coelhos
12.
Biophys Physicobiol ; 12: 145-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27493864

RESUMO

Troponin (Tn), consisting of three subunits, TnC, TnI, and TnT, is a protein in the thin filaments in muscle, and, together with another thin-filament protein tropomyosin (Tm), plays a major role in regulation of muscle contraction. Various mutations of Tn cause familial hypertrophic cardiomyopathy. These mutations are directly related to aberrations in this regulatory mechanism. Here we focus on the mutations E244D and K247R of TnT, which reside in the middle of the pathway of the Ca(2+)-binding signal from TnC to Tm. These mutations induce an increase in the maximum tension of cardiac muscle without changes in Ca(2+)-sensitivity. As a first step toward elucidating the molecular mechanism underlying this functional aberration, we carried out small-angle X-ray scattering experiments on the Tn core domain containing the wild type subunits and those containing the mutant TnT in the absence and presence of Ca(2+). Changes in the overall shape induced by the mutations were detected for the first time by the changes in the radius of gyration and the maximum dimension between the wild type and the mutants. Analysis of the scattering curves by model calculations shows that TnC adopts a dumbbell structure regardless of the mutations, and that the mutations change the distributions of the conformational ensembles so that the flexible N- and C-terminal regions of TnT become close to the center of the whole moelcule. This suggests, since these regions are related to the Tn-Tm interactions, that alteration of the Tn-Tm interactions induced by the mutations causes the functional aberration.

13.
Biochem Biophys Res Commun ; 435(2): 229-33, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23665019

RESUMO

Cofilin is an actin-binding protein that promotes F-actin depolymerization. It is well-known that cofilin-coated F-actin is more twisted than naked F-actin, and that the protomer is more tilted. However, the means by which the local changes induced by the binding of individual cofilin proteins proceed to the global conformational changes of the whole F-actin molecule remain unknown. Here we investigated the cofilin-induced changes in several parts of F-actin, through site-directed spin-label electron paramagnetic resonance spectroscopy analyses of recombinant actins containing single reactive cysteines. We found that the global, cooperative conformational changes induced by cofilin-binding, which were detected by the spin-label attached to the Cys374 residue, occurred without the detachment of the D-loop in subdomain 2 from the neighboring protomer. The two processes of local and global changes do not necessarily proceed in sequence.


Assuntos
Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/ultraestrutura , Actinas/química , Actinas/ultraestrutura , Sítios de Ligação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
14.
Biochem Biophys Res Commun ; 431(3): 542-6, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23321308

RESUMO

In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D(2)O or H(2)O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D(T)) of the hydration water in the first layer were found to be 1.2×10(-5) cm(2)/s and 1.7×10(-5) cm(2)/s for F-actin and G-actin, respectively, while that for bulk water was 2.8×10(-5) cm(2)/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D(T) values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior.


Assuntos
Actinas/química , Difração de Nêutrons/métodos , Espalhamento a Baixo Ângulo , Água/química
15.
Biophysics (Nagoya-shi) ; 9: 99-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27493547

RESUMO

Hydration structures around F-actin and myosin subfragment-1 (S1), which play central roles as counterparts in muscle contraction, were investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The radius of gyration of chymotryptic S1 was evaluated to be 41.3±1.1 Å for SAXS, 40.1±3.0 Å for SANS in H2O, and 37.8±0.8 Å for SANS in D2O, respectively. The values of the cross-sectional radius of gyration of F-actin were 25.4±0.03 Å for SAXS, 23.4±2.4 Å for SANS in H2O, and 22.6 ± 0.6 Å for SANS in D2O, respectively. These differences arise from different contributions of the hydration shell to the scattering curves. Analysis by model calculations showed that the hydration shell of S1 has the average density 10-15% higher than bulk water, being the typical hydration shell. On the other hand, the hydration shell of F-actin has the average density more than 19% higher than bulk water, indicating that F-actin has a denser, unusual hydration structure. The results indicate a difference in the hydration structures around F-actin and S1. The unusual hydration structure around F-actin may have the structural property of so-called "hyper-mobile water" around F-actin.

16.
J Biol Chem ; 287(52): 43270-6, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23135274

RESUMO

Actin plays fundamental roles in a variety of cell functions in eukaryotic cells. The polymerization-depolymerization cycle, between monomeric G-actin and fibrous F-actin, drives essential cell processes. Recently, we proposed the atomic model for the F-actin structure and found that actin was in the twisted form in the monomer and in the untwisted form in the filament. To understand how the polymerization process is regulated (Caspar, D. L. (1991) Curr. Biol. 1, 30-32), we need to know further details about the transition from the twisted to the untwisted form. For this purpose, we focused our attention on the Ala-108-Pro-112 loop, which must play crucial roles in the transition, and analyzed the consequences of the amino acid replacements on the polymerization process. As compared with the wild type, the polymerization of P109A was accelerated in both the nucleation and the elongation steps, and this was attributed to an increase in the frequency factor of the Arrhenius equation. The multiple conformations allowed by the substitution presumably resulted in the effective formation of the collision complex, thus accelerating polymerization. On the other hand, the A108G mutation reduced the rates of both nucleation and elongation due to an increase in the activation energy. In the cases of polymerization acceleration and deceleration, each functional aberration is attributed to a distinct elementary process. The rigidity of the loop, which mediates neither too strong nor too weak interactions between subdomains 1 and 3, might play crucial roles in actin polymerization.


Assuntos
Actinas/química , Adenosina Trifosfatases/química , Proteínas Aviárias/química , Complexos Multienzimáticos/química , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas , Humanos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
17.
Adv Urol ; 2011: 714978, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747845

RESUMO

Objectives. To prospectively examine the efficacy and safety of propiverine hydrochloride in patients with overactive bladder (OAB) symptoms who poorly responded to previous treatment with solifenacin, tolterodine or imidafenacin. Methods. Patients aged ≥20 with persisting OAB symptoms (≥6 in OAB symptom score (OABSS)) even after at least 4-week treatment using solifenacin, tolterodine or imidafenacin were enrolled. Propiverine 20 mg/day was administered for 12 weeks to 70 patients who desired the further improvement of OAB symptoms and 3 who had intolerable adverse events of previous drugs. The OABSS and postvoid residual urine volume (PVR) were determined before and at 4 and 12 weeks of treatment. Results. Of 73 patients enrolled (29 males and 44 females, median age 71 years), 52 completed the protocol treatment. The OABSS was significantly improved by propiverine treatment (9.0 at baseline, 6.2 at 4 weeks, 6.3 at 12 weeks (P < 0.001)). The scores of OAB symptoms (nighttime frequency, urgency and urge incontinence) except daytime frequency also improved significantly. No increase in PVR was observed. The most frequent adverse event was dry mouth (13.7%), followed by constipation (6.8%). Conclusions. Propiverine is useful to improve OAB for patients who poorly respond to solifenacin, tolterodine or imidafenacin.

18.
EMBO J ; 30(7): 1230-7, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21378753

RESUMO

The actin filament has clear polarity where one end, the pointed end, has a much slower polymerization and depolymerization rate than the other end, the barbed end. This intrinsic difference of the ends significantly affects all actin dynamics in the cell, which has central roles in a wide spectrum of cellular functions. The detailed mechanism underlying this difference has remained elusive, because high-resolution structures of the filament ends have not been available. Here, we present the structure of the actin filament pointed end obtained using a single particle analysis of cryo-electron micrographs. We determined that the terminal pointed end subunit is tilted towards the penultimate subunit, allowing specific and extra loop-to-loop inter-strand contacts between the two end subunits, which is not possible in other parts of the filament. These specific contacts prevent the end subunit from dissociating. For elongation, the loop-to-loop contacts also inhibit the incorporation of another actin monomer at the pointed end. These observations are likely to account for the less dynamic pointed end.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Multimerização Proteica , Citoesqueleto de Actina/ultraestrutura , Animais , Microscopia Crioeletrônica , Cinética , Modelos Moleculares , Coelhos
19.
J Mol Biol ; 408(1): 26-39, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21315081

RESUMO

A large number of actin-binding proteins (ABPs) regulate various kinds of cellular events in which the superstructure of the actin cytoskeleton is dynamically changed. Thus, to understand the actin dynamics in the cell, the mechanisms of actin regulation by ABPs must be elucidated. Moreover, it is particularly important to identify the side, barbed-end or pointed-end ABP binding sites on the actin filament. However, a simple, reliable method to determine the ABP binding sites on the actin filament is missing. Here, a novel electron microscopic method for determining the ABP binding sites is presented. This approach uses a gold nanoparticle that recognizes a histidine tag on an ABP and an image analysis procedure that can determine the polarity of the actin filament. This method will facilitate future study of ABPs.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/química , Sítios de Ligação , Citoesqueleto/química , Citoesqueleto/metabolismo , Compostos de Ouro/química , Compostos de Ouro/metabolismo , Humanos , Nanopartículas Metálicas/química , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Microscopia Eletrônica , Ligação Proteica
20.
J Mol Biol ; 408(1): 18-25, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21315084

RESUMO

Spire is an actin nucleator that initiates actin polymerization at a specific place in the cell. Similar to the Arp2/3 complex, spire was initially considered to bind to the pointed end of the actin filament when it generates a new actin filament. Subsequently, spire was reported to be associated with the barbed end (B-end); thus, there is still no consensus regarding the end with which spire interacts. Here, we report direct evidence that spire binds to the B-end of the actin filament, under conditions where spire accelerates actin polymerization. Using electron microscopy, we visualized the location of spire bound to the filament by gold nanoparticle labeling of the histidine-tagged spire, and the polarity of the actin filament was determined by image analysis. In addition, our results suggest that multiple spires, linked through one gold nanoparticle, enhance the acceleration of actin polymerization. The B-end binding of spire provides the basis for understanding its functional mechanism in the cell.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Compostos de Ouro/química , Compostos de Ouro/metabolismo , Humanos , Nanopartículas Metálicas/química , Proteínas dos Microfilamentos/química , Proteínas Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA