Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(4): e20335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37138544

RESUMO

Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the globe, but the amino acid composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat grain is limited by low concentrations of lysine (the most limiting essential amino acid) and high concentrations of free asparagine (precursor to the processing contaminant acrylamide). There are currently few available solutions for asparagine reduction and lysine biofortification through breeding. In this study, we investigated the genetic architecture controlling grain free amino acid composition and its relationship to other traits in a Robigus × Claire doubled haploid population. Multivariate analysis of amino acids and other traits showed that the two groups are largely independent of one another, with the largest effect on amino acids being from the environment. Linkage analysis of the population allowed identification of quantitative trait loci (QTL) controlling free amino acids and other traits, and this was compared against genomic prediction methods. Following identification of a QTL controlling free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this region of the genome. These findings can be used to select appropriate strategies for lysine biofortification and free asparagine reduction in wheat breeding programs.


Assuntos
Aminoácidos , Triticum , Aminoácidos/genética , Mapeamento Cromossômico , Triticum/genética , Triticum/química , Asparagina/análise , Asparagina/genética , Lisina/genética , Melhoramento Vegetal , Grão Comestível/genética , Reino Unido
2.
J Agric Food Chem ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745538

RESUMO

The nutritional safety of wheat-based food products is compromised by the presence of the processing contaminant acrylamide. Reduction of the key acrylamide precursor, free (soluble, non-protein) asparagine, in wheat grain can be achieved through crop management strategies, but such strategies have not been fully developed. We ran two field trials with 12 soft (biscuit) wheat varieties and different nitrogen, sulfur, potassium, and phosphorus fertilizer combinations. Our results indicated that a nitrogen-to-sulfur ratio of 10:1 kg/ha was sufficient to prevent large increases in free asparagine, whereas withholding potassium or phosphorus alone did not cause increases in free asparagine when sulfur was applied. Multispectral measurements of plants in the field were able to predict the free asparagine content of grain with an accuracy of 71%, while a combination of multispectral, fluorescence, and morphological measurements of seeds could distinguish high free asparagine grain from low free asparagine grain with an accuracy of 86%. The acrylamide content of biscuits correlated strongly with free asparagine content and with color measurements, indicating that agronomic strategies to decrease free asparagine would be effective and that quality control checks based on product color could eliminate high acrylamide biscuit products.

4.
Mol Microbiol ; 119(1): 74-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416195

RESUMO

Mammalian professional phagocytic cells ingest and kill invading microorganisms and prevent the development of bacterial infections. Our understanding of the sequence of events that results in bacterial killing and permeabilization in phagosomes is still largely incomplete. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte to study the fate of the bacteria Klebsiella pneumoniae inside phagosomes. Our analysis distinguishes three consecutive phases: bacteria first lose their ability to divide (killing), then their cytosolic content is altered (permeabilization), and finally their DNA is degraded (digestion). Phagosomal acidification and production of free radicals are necessary for rapid killing, membrane-permeabilizing proteins BpiC and AlyL are required for efficient permeabilization. These results illustrate how a combination of genetic and microscopical tools can be used to finely dissect the molecular events leading to bacterial killing and permeabilization in a maturing phagosome.


Assuntos
Dictyostelium , Animais , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Fagossomos/metabolismo , Klebsiella pneumoniae , Proteínas de Membrana/metabolismo , Bactérias/metabolismo , Mamíferos
5.
Plants (Basel) ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35270139

RESUMO

Since the discovery of acrylamide in food, and the identification of free asparagine as the key determinant of acrylamide concentration in wheat products, our understanding of how grain asparagine content is regulated has improved greatly. However, the targeted reduction in grain asparagine content has not been widely implemented in breeding programmes so far. Here we summarise how free asparagine concentration relates to other quality and agronomic traits and show that these relationships are unlikely to pose major issues for the breeding of low-asparagine wheat. We also outline the strategies that are possible for the breeding of low-asparagine wheat, using both natural and induced variation.

6.
BMC Plant Biol ; 21(1): 302, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187359

RESUMO

BACKGROUND: Understanding the determinants of free asparagine concentration in wheat grain is necessary to reduce levels of the processing contaminant acrylamide in baked and toasted wheat products. Although crop management strategies can help reduce asparagine concentrations, breeders have limited options to select for genetic variation underlying this trait. Asparagine synthetase enzymes catalyse a critical step in asparagine biosynthesis in plants and, in wheat, are encoded by five homeologous gene triads that exhibit distinct expression profiles. Within this family, TaASN2 genes are highly expressed during grain development but TaASN-B2 is absent in some varieties. RESULTS: Natural genetic diversity in the asparagine synthetase gene family was assessed in different wheat varieties revealing instances of presence/absence variation and other polymorphisms, including some predicted to affect the function of the encoded protein. The presence and absence of TaASN-B2 was determined across a range of UK and global common wheat varieties and related species, showing that the deletion encompassing this gene was already present in some wild emmer wheat genotypes. Expression profiling confirmed that TaASN2 transcripts were only detectable in the grain, while TaASN3.1 genes were highly expressed during the early stages of grain development. TaASN-A2 was the most highly expressed TaASN2 homeologue in most assayed wheat varieties. TaASN-B2 and TaASN-D2 were expressed at similar, lower levels in varieties possessing TaASN-B2. Expression of TaASN-A2 and TaASN-D2 did not increase to compensate for the absence of TaASN-B2, so total TaASN2 expression was lower in varieties lacking TaASN-B2. Consequently, free asparagine concentrations in field-produced grain were, on average, lower in varieties lacking TaASN-B2, although the effect was lost when free asparagine accumulated to very high concentrations as a result of sulphur deficiency. CONCLUSIONS: Selecting wheat genotypes lacking the TaASN-B2 gene may be a simple and rapid way for breeders to reduce free asparagine concentrations in commercial wheat grain.


Assuntos
Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Deleção de Genes , Triticum/genética , Aspartato-Amônia Ligase/metabolismo , Qualidade dos Alimentos , Genes de Plantas/genética , Estudos de Associação Genética , Variação Genética , Triticum/enzimologia , Triticum/metabolismo
7.
Front Microbiol ; 12: 643731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841366

RESUMO

Seed banks were first established to conserve crop genetic diversity, but seed banking has more recently been extended to wild plants, particularly crop wild relatives (CWRs) (e.g., by the Millennium Seed Bank (MSB), Royal Botanic Gardens Kew). CWRs have been recognised as potential reservoirs of beneficial traits for our domesticated crops, and with mounting evidence of the importance of the microbiome to organismal health, it follows that the microbial communities of wild relatives could also be a valuable resource for crop resilience to environmental and pathogenic threats. Endophytic fungi reside asymptomatically inside all plant tissues and have been found to confer advantages to their plant host. Preserving the natural microbial diversity of plants could therefore represent an important secondary conservation role of seed banks. At the same time, species that are reported as endophytes may also be latent pathogens. We explored the potential of the MSB as an incidental fungal endophyte bank by assessing diversity of fungi inside stored seeds. Using banana CWRs in the genus Musa as a case-study, we sequenced an extended ITS-LSU fragment in order to delimit operational taxonomic units (OTUs) and used a similarity and phylogenetics approach for classification. Fungi were successfully detected inside just under one third of the seeds, with a few genera accounting for most of the OTUs-primarily Lasiodiplodia, Fusarium, and Aspergillus-while a large variety of rare OTUs from across the Ascomycota were isolated only once. Fusarium species were notably abundant-of significance in light of Fusarium wilt, a disease threatening global banana crops-and so were targeted for additional sequencing with the marker EF1α in order to delimit species and place them in a phylogeny of the genus. Endophyte community composition, diversity and abundance was significantly different across habitats, and we explored the relationship between community differences and seed germination/viability. Our results show that there is a previously neglected invisible fungal dimension to seed banking that could well have implications for the seed collection and storage procedures, and that collections such as the MSB are indeed a novel source of potentially useful fungal strains.

8.
Br J Pharmacol ; 178(5): 1149-1163, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347604

RESUMO

BACKGROUND AND PURPOSE: Cannabidiol (CBD) has been shown to differentially regulate the mechanistic target of rapamycin complex 1 (mTORC1) in preclinical models of disease, where it reduces activity in models of epilepsies and cancer and increases it in models of multiple sclerosis (MS) and psychosis. Here, we investigate the effects of phytocannabinoids on mTORC1 and define a molecular mechanism. EXPERIMENTAL APPROACH: A novel mechanism for phytocannabinoids was identified using the tractable model system, Dictyostelium discoideum. Using mouse embryonic fibroblasts, we further validate this new mechanism of action. We demonstrate clinical relevance using cells derived from healthy individuals and from people with MS (pwMS). KEY RESULTS: Both CBD and the more abundant cannabigerol (CBG) enhance mTORC1 activity in D. discoideum. We identify a mechanism for this effect involving inositol polyphosphate multikinase (IPMK), where elevated IPMK expression reverses the response to phytocannabinoids, decreasing mTORC1 activity upon treatment, providing new insight on phytocannabinoids' actions. We further validated this mechanism using mouse embryonic fibroblasts. Clinical relevance of this effect was shown in primary human peripheral blood mononuclear cells, where CBD and CBG treatment increased mTORC1 activity in cells derived from healthy individuals and decreased mTORC1 activity in cells derived from pwMS. CONCLUSION AND IMPLICATIONS: Our findings suggest that both CBD and the abundant CBG differentially regulate mTORC1 signalling through a mechanism dependent on the activity of the upstream IPMK signalling pathway, with potential relevance to the treatment of mTOR-related disorders, including MS.


Assuntos
Canabinoides/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Células Cultivadas , Fibroblastos , Leucócitos Mononucleares , Camundongos
9.
Proc Natl Acad Sci U S A ; 117(38): 23617-23625, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32879008

RESUMO

Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.


Assuntos
Ácidos Decanoicos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Astrócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Dictyostelium/efeitos dos fármacos , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Epilepsia , Glucose/metabolismo , Hipocampo/química , Hipocampo/metabolismo , Humanos , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Fatores de Iniciação de Peptídeos , Fosforilação , Ratos
10.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485924

RESUMO

Free (soluble, non-protein) asparagine concentration can increase many-fold in wheat grain in response to sulphur deficiency. This exacerbates a major food safety and regulatory compliance problem for the food industry because free asparagine may be converted to the carcinogenic contaminant, acrylamide, during baking and processing. Here, we describe the predominant route for the conversion of asparagine to acrylamide in the Maillard reaction. The effect of sulphur deficiency and its interaction with nitrogen availability is reviewed, and we reiterate our advice that sulphur should be applied to wheat being grown for human consumption at a rate of 20 kg per hectare. We describe the genetic control of free asparagine accumulation, including genes that encode metabolic enzymes (asparagine synthetase, glutamine synthetase, glutamate synthetase, and asparaginase), regulatory protein kinases (sucrose nonfermenting-1 (SNF1)-related protein kinase-1 (SnRK1) and general control nonderepressible-2 (GCN2)), and basic leucine zipper (bZIP) transcription factors, and how this genetic control responds to sulphur, highlighting the importance of asparagine synthetase-2 (ASN2) expression in the embryo. We show that expression of glutamate-cysteine ligase is reduced in response to sulphur deficiency, probably compromising glutathione synthesis. Finally, we describe unexpected effects of sulphur deficiency on carbon metabolism in the endosperm, with large increases in expression of sucrose synthase-2 (SuSy2) and starch synthases.


Assuntos
Acrilamidas/química , Inocuidade dos Alimentos , Enxofre/química , Triticum/metabolismo , Acrilamida/química , Asparagina/química , Carbono/metabolismo , Catálise , Grão Comestível/metabolismo , Contaminação de Alimentos , Glutationa/química , Cinética , Reação de Maillard , Nitrogênio/metabolismo , RNA-Seq , Solubilidade , Amido
11.
Biochem Biophys Rep ; 22: 100751, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32258439

RESUMO

Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.

12.
Br J Pharmacol ; 177(4): 912-928, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31693171

RESUMO

BACKGROUND AND PURPOSE: Epidiolex™, a form of highly purified cannabidiol (CBD) derived from Cannabis plants, has demonstrated seizure control activity in patients with Dravet syndrome, without a fully elucidated mechanism of action. We have employed an unbiased approach to investigate this mechanism at a cellular level. EXPERIMENTAL APPROACH: We use a tractable biomedical model organism, Dictyostelium, to identify a protein controlling the effect of CBD and characterize this mechanism. We then translate these results to a Dravet syndrome mouse model and an acute in vitro seizure model. KEY RESULTS: CBD activity is partially dependent upon the mitochondrial glycine cleavage system component, GcvH1 in Dictyostelium, orthologous to the human glycine cleavage system component H protein, which is functionally linked to folate one-carbon metabolism (FOCM). Analysis of FOCM components identified a mechanism for CBD in directly inhibiting methionine synthesis. Analysis of brain tissue from a Dravet syndrome mouse model also showed drastically altered levels of one-carbon components including methionine, and an in vitro rat seizure model showed an elevated level of methionine that is attenuated following CBD treatment. CONCLUSIONS AND IMPLICATIONS: Our results suggest a novel mechanism for CBD in the regulating methionine levels and identify altered one-carbon metabolism in Dravet syndrome and seizure activity.


Assuntos
Canabidiol , Dictyostelium , Epilepsia , Síndrome de Lennox-Gastaut , Animais , Anticonvulsivantes/uso terapêutico , Canabidiol/uso terapêutico , Ciclo do Carbono , Epilepsia/tratamento farmacológico , Humanos , Síndrome de Lennox-Gastaut/tratamento farmacológico , Metionina/uso terapêutico , Ratos
13.
Int J Dev Biol ; 63(8-9-10): 541-550, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840791

RESUMO

Developing novel compounds for the treatment of diseases remains one of the highest priorities in biomedical research, where it is critical to identify their targets and how they work at a cellular level. Most studies in this area employ mammalian models, since rodents or non-human primates are seen as a good approximation for humans. However, using mammalian models can be problematic for a range of reasons, including high genetic redundancy and the essential role for many proteins in development. More importantly, it is very difficult to identify how compounds function at a cellular or molecular level in these models without a previously suggested mechanism or target. So how can we identify targets of medicinal compounds? In this review we outline the use of an innovative and tractable model system, Dictyostelium discoideum, to provide useful insight to the cellular and molecular functions of both therapeutic drugs and pharmacologically active natural products. We outline the advantages of using this model, and then provide a range of exemplar studies using D. discoideum in pharmacological research to demonstrate breakthroughs in understanding the action and effects of compounds, and the subsequent translational of these advances to mammalian models leading to potential improvements in societal health.


Assuntos
Produtos Biológicos/farmacologia , Dictyostelium/fisiologia , Descoberta de Drogas , Animais , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Transtorno Bipolar/tratamento farmacológico , Cafeína/farmacologia , Dictyostelium/genética , Epilepsia/tratamento farmacológico , Flavonoides/farmacologia , Humanos , Modelos Animais , Modelos Biológicos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA