Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 47(11): 1992-2001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941286

RESUMO

The formation and extinction of fear memories represent two forms of learning that each engage the hippocampus and amygdala. How cell populations in these areas contribute to fear relapse, however, remains unclear. Here, we demonstrate that, in male mice, cells active during fear conditioning in the dentate gyrus of hippocampus exhibit decreased activity during extinction and are re-engaged after contextual fear relapse. In vivo calcium imaging reveals that relapse drives population dynamics in the basolateral amygdala to revert to a network state similar to the state present during fear conditioning. Finally, we find that optogenetic inactivation of neuronal ensembles active during fear conditioning in either the hippocampus or amygdala is sufficient to disrupt fear expression after relapse, while optogenetic stimulation of these same ensembles after extinction is insufficient to artificially mimic fear relapse. These results suggest that fear relapse triggers a partial re-emergence of the original fear memory representation, providing new insight into the neural substrates of fear relapse.


Assuntos
Cálcio , Condicionamento Clássico , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Recidiva
2.
Synapse ; 76(7-8): e22234, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460585

RESUMO

4-aminopyridine (4-AP) is a potassium channel blocker that has been used to treat patients with multiple sclerosis and Lambert-Eaton disease. The concentration of this drug in the blood of patients was estimated to be in low or submicromolar range. Animal studies have shown that 4-AP at such low concentration selectively blocks a subset of channels in Kv1 or Kv3 families. The crayfish opener neuromuscular junction and ventral superficial flexor (VSF) preparations were used to examine functions of K+ channels blocked by low concentrations of 4-AP. At opener motor axons, intracellular recordings show that 4-AP could increase action potential (AP) amplitude, duration, and after-depolarization (ADP) at 10 µM. As 4-AP concentration was increased, in twofold steps, AP amplitude did not increase further up to 5 mM. AP duration and ADP increased significantly mainly in two concentration ranges, 10-50 µM and 1-5 mM. The effects of 50 µM 4-AP on the VSF were less consistent than that observed at the opener motor axons. 4-AP did not change AP amplitude of motor axons recorded with an extracellular electrode and change in AP repolarizing potential was observed in ∼25% of the axons. EPSP recorded simultaneously with AP showed an increase in amplitude with 4-AP treatment only in 30% of the axon-EPSP pairs. 4-AP also increased firing frequencies of ∼50% of axons. In four animals, 4-AP "awakened" the firing of APs from an axon that was silent before the drug. The mixture of positive and negative 4-AP effects summarized above was observed in the same VSF preparations in all cases (n = 8). We propose that there is a significant diversity in the density 4-AP-sensitive potassium channels among motor axons of the VSF. Functional significance in the differences of 4-AP sensitivity of the two motor systems is discussed.


Assuntos
4-Aminopiridina , Astacoidea , Canais de Potássio , 4-Aminopiridina/farmacologia , Potenciais de Ação , Animais , Astacoidea/fisiologia , Axônios , Canais de Potássio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA