Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36557753

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen often responsible for biofilm-associated infections. The high adhesion of bacterial cells onto biotic/abiotic surfaces is followed by production of an extracellular polysaccharidic matrix and formation of a sessile community (the biofilm) by the release of specific quorum-sensing molecules, named autoinducers (AI). When the concentrations of AI reach a threshold level, they induce the expression of many virulence genes, including those involved in biofilm formation, motility, pyoverdine and pyocyanin release. P. aeruginosa embedded into biofilm becomes resistant to both conventional drugs and the host's immune response. Accordingly, biofilm-associated infections are a major clinical problem underlining the need for new antimicrobial therapies. In this study, we evaluated the effects of pomegranate peel extract (PomeGr) in vitro on P. aeruginosa growth and biofilm formation; moreover, the release of four AI was assessed. The phenolic profile of PomeGr, exposed or not to bacteria, was determined by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis. We found that bacterial growth, biofilm production and AI release were impaired upon PomeGr treatment. In addition, the PomeGr phenolic content was also markedly hampered following incubation with bacterial cells. In particular, punicalagin, punicalin, pedunculagin, granatin, di-(HHDP-galloyl-hexoside) pentoside and their isomers were highly consumed. Overall, these results provide novel insights on the ability of PomeGr to attenuate P. aeruginosa virulence; moreover, the AI impairment and the observed consumption of specific phenolic compounds may offer new tools in designing innovative therapeutic approaches against bacterial infections.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36361021

RESUMO

Candida albicans expresses numerous virulence factors that contribute to pathogenesis, including its dimorphic transition and even biofilm formation, through the release of specific quorum sensing molecules, such as the autoinducers (AI) tyrosol and farnesol. In particular, once organized as biofilm, Candida cells can elude conventional antifungal therapies and the host's immune defenses as well. Accordingly, biofilm-associated infections become a major clinical challenge underlining the need of innovative antimicrobial approaches. The aim of this in vitro study was to assess the effects of pomegranate peel extract (PomeGr) on C. albicans growth and biofilm formation; in addition, the release of tyrosol and farnesol was investigated. The phenolic profile of PomeGr was assessed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis before and after exposure to C. albicans. Here, we showed that fungal growth, biofilm formation and AI release were altered by PomeGr treatment. Moreover, the phenolic content of PomeGr was substantially hampered upon exposure to fungal cells; particularly pedunculagin, punicalin, punicalagin, granatin, di-(HHDP-galloyl-hexoside)-pentoside and their isomers as well as ellagic acid-hexoside appeared highly consumed, suggesting their role as bioactive molecules against Candida. Overall, these new insights on the anti-Candida properties of PomeGr and its potential mechanisms of action may represent a relevant step in the design of novel therapeutic approaches against fungal infections.


Assuntos
Farneseno Álcool , Punica granatum , Farneseno Álcool/farmacologia , Biofilmes , Candida albicans , Antifúngicos/farmacologia , Extratos Vegetais/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35805711

RESUMO

Biofilm production on biotic and abiotic surfaces is crucial in the pathogenesis of most infections, particularly those occurring in the oral cavity. Its prevention and/or control may greatly facilitate the management of patients with oral diseases. Here, the antibiofilm activity of a biomimetic hydroxyapatite and a natural compound, MicroRepair (MicroR) and pomegranate (PomeGr), respectively, was assessed. By luminescence/fluorescence-based assays, Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were tested for biofilm production in the presence of MicroR and/or PomeGr. We found that both MicroR and PomeGr could affected biofilm production; however, the efficacy of the two, given alone or in combination, varied according to the microbial agent considered. These data open to clinical studies aimed at defining the most efficacious protocols to counteract oral biofilm-associated infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos , Biofilmes , Candida albicans , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
4.
Materials (Basel) ; 15(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35161211

RESUMO

Hyperesthesia is related to increased sensitivity of dental tissues to mechanical, chemical and thermal stimuli. The aim of this prospective clinical trial was to compare the effectiveness of a calcium-fluoride-forming agent (Tiefenfluorid®, Humanchemie GmbH, Alfeld, Germany) with that of a fluoride varnish (EnamelastTM, Ultradent Inc., Cologne, Germany) in the treatment of dental hyperesthesia in adult patients. In total, 176 individuals (106 females and 70 males, aged 18-59 years old) diagnosed with dental hyperesthesia (DH) were enrolled. The main clinical symptoms were hyperesthesia from coldness and sweetness during chewing; the types of clinical lesions were also determined and recorded. The patients were selected randomly and divided into two groups: (i) the first group of 96 patients was treated with Tiefenfluorid® applied in three appointments at 7-day intervals; (ii) the second group of 80 patients was treated with EnamelastTM, applied seven times at 7-day intervals. All the patients were recalled 7 days, 14 days, 1 month, 3 months, and 6 months from the last application. At the baseline and during every follow-up visit, the DH was measured with a pulp tester. A random intercept/random slope model was used to evaluate the effect of the treatment, at various times with respect to the initial diagnosis. Within the limits of the present study, Tiefenfluorid® was more effective than EnamelastTM against DH in that it provided long-lasting results, with a significant improvement still detected at the latest 6-month follow-up.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33925742

RESUMO

Recently, interest has grown by focusing on the evaluation of a molecule already produced in the human body such as hyaluronic acid (HA), as an application to the surface of the titanium implant. Its osteo-conductive characteristics and positive interaction with the progenitor cells responsible for bone formation, consequently, make it responsible for secondary stability. The aim of this work was to analyze the various surface treatments in titanium implants, demonstrating that the topography and surface chemistry of biomaterials can correlate with the host response; also focusing on the addition of HA to the implant surface and assessing the biological implications during early stages of recovery. Used as a coating, HA acts on the migration, adhesion, proliferation and differentiation of cell precursors on titanium implants by improving the connection between implant and bone. Furthermore, the improvement of the bioactivity of the implant surfaces through HA could therefore facilitate the positioning of the dental prosthesis precisely in the early loading phase, thus satisfying the patients' requests. It is important to note that all the findings should be supported by further experimental studies in animals as well as humans to evaluate and confirm the use of HA in any field of dentistry.


Assuntos
Implantes Dentários , Osseointegração , Animais , Durapatita , Humanos , Ácido Hialurônico , Propriedades de Superfície , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA