Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Clin Transplant ; 38(10): e15466, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39329220

RESUMO

INTRODUCTION: ChatGPT has shown the ability to answer clinical questions in general medicine but may be constrained by the specialized nature of kidney transplantation. Thus, it is important to explore how ChatGPT can be used in kidney transplantation and how its knowledge compares to human respondents. METHODS: We prompted ChatGPT versions 3.5, 4, and 4 Visual (4 V) with 12 multiple-choice questions related to six kidney transplant cases from 2013 to 2015 American Society of Nephrology (ASN) fellowship program quizzes. We compared the performance of ChatGPT with US nephrology fellowship program directors, nephrology fellows, and the audience of the ASN's annual Kidney Week meeting. RESULTS: Overall, ChatGPT 4 V correctly answered 10 out of 12 questions, showing a performance level comparable to nephrology fellows (group majority correctly answered 9 of 12 questions) and training program directors (11 of 12). This surpassed ChatGPT 4 (7 of 12 correct) and 3.5 (5 of 12). All three ChatGPT versions failed to correctly answer questions where the consensus among human respondents was low. CONCLUSION: Each iterative version of ChatGPT performed better than the prior version, with version 4 V achieving performance on par with nephrology fellows and training program directors. While it shows promise in understanding and answering kidney transplantation questions, ChatGPT should be seen as a complementary tool to human expertise rather than a replacement.


Assuntos
Transplante de Rim , Humanos , Inquéritos e Questionários , Nefrologia/educação , Bolsas de Estudo , Prognóstico , Falência Renal Crônica/cirurgia , Feminino
3.
J Neurosurg ; : 1-10, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151199

RESUMO

OBJECTIVE: The objective of this study was to investigate the use of indocyanine green videoangiography with FLOW 800 hemodynamic parameters intraoperatively during superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery to predict patency prior to anastomosis performance. METHODS: A retrospective and exploratory data analysis was conducted using FLOW 800 software prior to anastomosis to assess four regions of interest (ROIs; proximal and distal recipients and adjacent and remote gyri) for four hemodynamic parameters (speed, delay, rise time, and time to peak). Medical records were used to classify patients into flow and no-flow groups based on immediate or perioperative anastomosis patency. Hemodynamic parameters were compared using univariate and multivariate analyses. Principal component analysis was used to identify high risk of no flow (HRnf) and low risk of no flow (LRnf) groups, correlated with prospective angiographic follow-ups. Machine learning models were fitted to predict patency using FLOW 800 features, and the a posteriori effect of complication risk of those features was computed. RESULTS: A total of 39 cases underwent STA-MCA bypass surgery with complete FLOW 800 data collection. Thirty-five cases demonstrated flow after anastomosis revascularization and were compared with 4 cases with no flow after revascularization. Proximal and distal recipient speeds were significantly different between the no-flow and flow groups (proximal: 238.3 ± 120.8 and 138.5 ± 93.6, respectively [p < 0.001]; distal: 241.0 ± 117.0 and 142.1 ± 103.8, respectively [p < 0.05]). Based on principal component analysis, the HRnf group (n = 10) was characterized by high-flow speed (> 75th percentile) in all ROIs, whereas the LRnf group (n = 10) had contrasting patterns. In prospective long-term follow-up, 6 of 9 cases in the HRnf group, including the original no-flow cases, had no or low flow, whereas 8 of 8 cases in the LRnf group maintained robust flow. Machine learning models predicted patency failure with a mean F1 score of 0.930 and consistently relied on proximal recipient speed as the most important feature. Computation of posterior likelihood showed a 95.29% chance of patients having long-term patency given a lower proximal speed. CONCLUSIONS: These results suggest that a high proximal speed measured in the recipient vessel prior to anastomosis can elevate the risk of perioperative no flow and long-term reduction of flow. With an increased dataset size, continued FLOW 800-based ROI metric analysis could be used to guide intraoperative anastomosis site selection prior to anastomosis and predict patency outcome.

4.
Clin Spine Surg ; 37(1): E30-E36, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285429

RESUMO

STUDY DESIGN: A retrospective cohort study. OBJECTIVE: The purpose of this study is to develop a machine learning algorithm to predict nonhome discharge after cervical spine surgery that is validated and usable on a national scale to ensure generalizability and elucidate candidate drivers for prediction. SUMMARY OF BACKGROUND DATA: Excessive length of hospital stay can be attributed to delays in postoperative referrals to intermediate care rehabilitation centers or skilled nursing facilities. Accurate preoperative prediction of patients who may require access to these resources can facilitate a more efficient referral and discharge process, thereby reducing hospital and patient costs in addition to minimizing the risk of hospital-acquired complications. METHODS: Electronic medical records were retrospectively reviewed from a single-center data warehouse (SCDW) to identify patients undergoing cervical spine surgeries between 2008 and 2019 for machine learning algorithm development and internal validation. The National Inpatient Sample (NIS) database was queried to identify cervical spine fusion surgeries between 2009 and 2017 for external validation of algorithm performance. Gradient-boosted trees were constructed to predict nonhome discharge across patient cohorts. The area under the receiver operating characteristic curve (AUROC) was used to measure model performance. SHAP values were used to identify nonlinear risk factors for nonhome discharge and to interpret algorithm predictions. RESULTS: A total of 3523 cases of cervical spine fusion surgeries were included from the SCDW data set, and 311,582 cases were isolated from NIS. The model demonstrated robust prediction of nonhome discharge across all cohorts, achieving an area under the receiver operating characteristic curve of 0.87 (SD=0.01) on both the SCDW and nationwide NIS test sets. Anterior approach only, age, elective admission status, Medicare insurance status, and total Elixhauser Comorbidity Index score were the most important predictors of discharge destination. CONCLUSIONS: Machine learning algorithms reliably predict nonhome discharge across single-center and national cohorts and identify preoperative features of importance following cervical spine fusion surgery.


Assuntos
Medicare , Alta do Paciente , Estados Unidos , Humanos , Idoso , Estudos Retrospectivos , Aprendizado de Máquina , Vértebras Cervicais/cirurgia
5.
World Neurosurg ; 182: e245-e252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006939

RESUMO

OBJECTIVE: To examine the usefulness of carotid web (CW), carotid bifurcation and their combined angioarchitectural measurements in assessing stroke risk. METHODS: Anatomic data on the internal carotid artery (ICA), common carotid artery (CCA), and the CW were gathered as part of a retrospective study from symptomatic (stroke) and asymptomatic (nonstroke) patients with CW. We built a model of stroke risk using principal-component analysis, Firth regression trained with 5-fold cross-validation, and heuristic binary cutoffs based on the Minimal Description Length principle. RESULTS: The study included 22 patients, with a mean age of 55.9 ± 12.8 years; 72.9% were female. Eleven patients experienced an ischemic stroke. The first 2 principal components distinguished between patients with stroke and patients without stroke. The model showed that ICA-pouch tip angle (P = 0.036), CCA-pouch tip angle (P = 0.036), ICA web-pouch angle (P = 0.036), and CCA web-pouch angle (P = 0.036) are the most important features associated with stroke risk. Conversely, CCA and ICA anatomy (diameter and angle) were not found to be risk factors. CONCLUSIONS: This pilot study shows that using data from computed tomography angiography, carotid bifurcation, and CW angioarchitecture may be used to assess stroke risk, allowing physicians to tailor care for each patient according to risk stratification.


Assuntos
Estenose das Carótidas , Acidente Vascular Cerebral , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Artéria Carótida Interna/diagnóstico por imagem , Estudos Retrospectivos , Projetos Piloto , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/complicações , Artéria Carótida Primitiva , Medição de Risco , Estenose das Carótidas/complicações
6.
Am J Bioeth ; 23(10): 55-57, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812113

Assuntos
Bioética , Cavalos , Animais
7.
Neurosurgery ; 93(4): 745-754, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246874

RESUMO

Over the past generation, outcome measures in spine care have evolved from a reliance on clinician-reported assessment toward recognizing the importance of the patient's perspective and the wide incorporation of patient-reported outcomes (PROs). While patient-reported outcomes are now considered an integral component of outcomes assessments, they cannot wholly capture the state of a patient's functionality. There is a clear need for quantitative and objective patient-centered outcome measures. The pervasiveness of smartphones and wearable devices in modern society, which passively collect data related to health, has ushered in a new era of spine care outcome measurement. The patterns emerging from these data, so-called "digital biomarkers," can accurately describe characteristics of a patient's health, disease, or recovery state. Broadly, the spine care community has thus far concentrated on digital biomarkers related to mobility, although the researcher's toolkit is anticipated to expand in concert with advancements in technology. In this review of the nascent literature, we describe the evolution of spine care outcome measurements, outline how digital biomarkers can supplement current clinician-driven and patient-driven measures, appraise the present and future of the field in the modern era, as well as discuss present limitations and areas for further study, with a focus on smartphones (see Supplemental Digital Content , http://links.lww.com/NEU/D809 , for a similar appraisal of wearable devices).


Assuntos
Smartphone , Dispositivos Eletrônicos Vestíveis , Humanos , Avaliação de Resultados em Cuidados de Saúde , Coluna Vertebral , Biomarcadores
8.
Asia Pac J Ophthalmol (Phila) ; 12(3): 310-314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249902

RESUMO

Artificial intelligence and machine learning applications are becoming increasingly popular in health care and medical devices. The development of accurate machine learning algorithms requires large quantities of good and diverse data. This poses a challenge in health care because of the sensitive nature of sharing patient data. Decentralized algorithms through federated learning avoid data aggregation. In this paper we give an overview of federated learning, current examples in healthcare and ophthalmology, challenges, and next steps.


Assuntos
Inteligência Artificial , Oftalmologia , Humanos , Algoritmos , Instalações de Saúde , Aprendizado de Máquina
9.
World Neurosurg ; 171: e620-e630, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36586581

RESUMO

BACKGROUND: Spine abnormalities are a common manifestation of Neurofibromatosis Type 1 (NF1); however, the outcomes of surgical treatment for NF1-associated spinal deformity are not well explored. The purpose of this study was to investigate the outcome and risk profiles of multilevel fusion surgery for NF1 patients. METHODS: The National Inpatient Sample was queried for NF1 and non-NF1 patient populations with neuromuscular scoliosis who underwent multilevel fusion surgery involving eight or more vertebral levels between 2004 and 2017. Multivariate regression modeling was used to explore the relationship between perioperative variables and pertinent outcomes. RESULTS: Of the 55,485 patients with scoliosis, 533 patients (0.96%) had NF1. Patients with NF1 were more likely to have comorbid solid tumors (P < 0.0001), clinical depression (P < 0.0001), peripheral vascular disease (P < 0.0001), and hypertension (P < 0.001). Following surgery, NF1 patients had a higher incidence of hydrocephalus (0.6% vs. 1.9% P = 0.002), seizures (4.9% vs. 5.7% P = 0.006), and accidental vessel laceration (0.3% vs.1.9% P = 0.011). Although there were no differences in overall complication rates or in-hospital mortality, multivariate regression revealed NF1 patients had an increased probability of pulmonary (OR 0.5, 95%CI 0.3-0.8, P = 0.004) complications. There were no significant differences in utilization, including nonhome discharge or extended hospitalization; however, patients with NF1 had higher total hospital charges (mean -$18739, SE 3384, P < 0.0001). CONCLUSIONS: These findings indicate that NF1 is associated with certain complications following multilevel fusion surgery but does not appear to be associated with differences in quality or cost outcomes. These results provide some guidance to surgeons and other healthcare professionals in their perioperative decision making by raising awareness about risk factors for NF1 patients undergoing multilevel fusion surgery. We intend for this study to set the national baseline for complications after multilevel fusion in the NF1 population.


Assuntos
Neurofibromatose 1 , Doenças Neuromusculares , Escoliose , Fusão Vertebral , Humanos , Escoliose/cirurgia , Neurofibromatose 1/complicações , Complicações Pós-Operatórias/epidemiologia , Hospitalização , Alta do Paciente , Fusão Vertebral/métodos , Doenças Neuromusculares/etiologia , Estudos Retrospectivos
10.
PLoS One ; 17(10): e0273262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240135

RESUMO

The fundamental challenge in machine learning is ensuring that trained models generalize well to unseen data. We developed a general technique for ameliorating the effect of dataset shift using generative adversarial networks (GANs) on a dataset of 149,298 handwritten digits and dataset of 868,549 chest radiographs obtained from four academic medical centers. Efficacy was assessed by comparing area under the curve (AUC) pre- and post-adaptation. On the digit recognition task, the baseline CNN achieved an average internal test AUC of 99.87% (95% CI, 99.87-99.87%), which decreased to an average external test AUC of 91.85% (95% CI, 91.82-91.88%), with an average salvage of 35% from baseline upon adaptation. On the lung pathology classification task, the baseline CNN achieved an average internal test AUC of 78.07% (95% CI, 77.97-78.17%) and an average external test AUC of 71.43% (95% CI, 71.32-71.60%), with a salvage of 25% from baseline upon adaptation. Adversarial domain adaptation leads to improved model performance on radiographic data derived from multiple out-of-sample healthcare populations. This work can be applied to other medical imaging domains to help shape the deployment toolkit of machine learning in medicine.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia
11.
Neurosurgery ; 91(2): 322-330, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834322

RESUMO

BACKGROUND: Extended postoperative hospital stays are associated with numerous clinical risks and increased economic cost. Accurate preoperative prediction of extended length of stay (LOS) can facilitate targeted interventions to mitigate clinical harm and resource utilization. OBJECTIVE: To develop a machine learning algorithm aimed at predicting extended LOS after cervical spine surgery on a national level and elucidate drivers of prediction. METHODS: Electronic medical records from a large, urban academic medical center were retrospectively examined to identify patients who underwent cervical spine fusion surgeries between 2008 and 2019 for machine learning algorithm development and in-sample validation. The National Inpatient Sample database was queried to identify cervical spine fusion surgeries between 2009 and 2017 for out-of-sample validation of algorithm performance. Gradient-boosted trees predicted LOS and efficacy was assessed using the area under the receiver operating characteristic curve (AUROC). Shapley values were calculated to characterize preoperative risk factors for extended LOS and explain algorithm predictions. RESULTS: Gradient-boosted trees accurately predicted extended LOS across cohorts, achieving an AUROC of 0.87 (SD = 0.01) on the single-center validation set and an AUROC of 0.84 (SD = 0.00) on the nationwide National Inpatient Sample data set. Anterior approach only, elective admission status, age, and total number of Elixhauser comorbidities were important predictors that affected the likelihood of prolonged LOS. CONCLUSION: Machine learning algorithms accurately predict extended LOS across single-center and national patient cohorts and characterize key preoperative drivers of increased LOS after cervical spine surgery.


Assuntos
Aprendizado de Máquina , Fusão Vertebral , Vértebras Cervicais/cirurgia , Humanos , Tempo de Internação , Estudos Retrospectivos
12.
Math Biosci Eng ; 19(7): 6795-6813, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730283

RESUMO

A significant amount of clinical research is observational by nature and derived from medical records, clinical trials, and large-scale registries. While there is no substitute for randomized, controlled experimentation, such experiments or trials are often costly, time consuming, and even ethically or practically impossible to execute. Combining classical regression and structural equation modeling with matching techniques can leverage the value of observational data. Nevertheless, identifying variables of greatest interest in high-dimensional data is frequently challenging, even with application of classical dimensionality reduction and/or propensity scoring techniques. Here, we demonstrate that projecting high-dimensional medical data onto a lower-dimensional manifold using deep autoencoders and post-hoc generation of treatment/control cohorts based on proximity in the lower-dimensional space results in better matching of confounding variables compared to classical propensity score matching (PSM) in the original high-dimensional space (P<0.0001) and performs similarly to PSM models constructed by experts with prior knowledge of the underlying pathology when evaluated on predicting risk ratios from real-world clinical data. Thus, in cases when the underlying problem is poorly understood and the data is high-dimensional in nature, matching in the autoencoder latent space might be of particular benefit.


Assuntos
Projetos de Pesquisa , Estudos de Coortes , Humanos , Pontuação de Propensão
13.
World Neurosurg ; 165: e83-e91, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654334

RESUMO

BACKGROUND: Delays in postoperative referrals to rehabilitation or skilled nursing facilities contribute toward extended hospital stays. Facilitating more efficient referrals through accurate preoperative prediction algorithms has the potential to reduce unnecessary economic burden and minimize risk of hospital-acquired complications. We develop a robust machine learning algorithm to predict non-home discharge after thoracolumbar spine surgery that generalizes to unseen populations and identifies markers for prediction. METHODS: Retrospective electronic health records were obtained from our single-center data warehouse (SCDW) to identify patients undergoing thoracolumbar spine surgeries between 2008 and 2019 for algorithm development and internal validation. The National Inpatient Sample (NIS) database was queried to identify thoracolumbar surgeries between 2009 and 2017 for out-of-sample validation. Ensemble decision trees were constructed for prediction and area under the receiver operating characteristic curve (AUROC) was used to assess performance. Shapley additive explanations values were derived to identify drivers of non-home discharge for interpretation of algorithm predictions. RESULTS: A total of 5224 cases of thoracolumbar spine surgeries were isolated from the SCDW and 492,312 cases were identified from NIS. The model achieved an AUROC of 0.81 (standard deviation [SD] = 0.01) on the SCDW test set and 0.77 (SD = 0.01) on the nationwide NIS data set, thereby demonstrating robust prediction of non-home discharge across all diverse patient cohorts. Age, total Elixhauser comorbidities, Medicare insurance, weighted Elixhauser score, and female sex were among the most important predictors of non-home discharge. CONCLUSIONS: Machine learning algorithms reliably predict non-home discharge after thoracolumbar spine surgery across single-center and national cohorts and identify preoperative features of importance that elucidate algorithm decision-making.


Assuntos
Medicare , Alta do Paciente , Idoso , Humanos , Tempo de Internação , Aprendizado de Máquina , Estudos Retrospectivos , Estados Unidos
14.
Neurosurgery ; 91(1): 87-92, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35343468

RESUMO

BACKGROUND: The merit-based incentive payment system (MIPS) program was implemented to tie Medicare reimbursements to value-based care measures. Neurosurgical performance in MIPS has not yet been described. OBJECTIVE: To characterize neurosurgical performance in the first 2 years of MIPS. METHODS: Publicly available data regarding MIPS performance for neurosurgeons in 2017 and 2018 were queried. Descriptive statistics about physician characteristics, MIPS performance, and ensuing payment adjustments were performed, and predictors of bonus payments were identified. RESULTS: There were 2811 physicians included in 2017 and 3147 in 2018. Median total MIPS scores (99.1 vs 90.4, P < .001) and quality scores (97.9 vs 88.5, P < .001) were higher in 2018 than in 2017. More neurosurgeons (2758, 87.6%) received bonus payments in 2018 than in 2017 (2013, 71.6%). Of the 2232 neurosurgeons with scores in both years, 1347 (60.4%) improved their score. Reporting through an alternative payment model (odds ratio [OR]: 32.3, 95% CI: 16.0-65.4; P < .001) and any practice size larger than 10 (ORs ranging from 2.37 to 10.2, all P < .001) were associated with receiving bonus payments. Increasing years in practice (OR: 0.99; 95% CI: 0.982-0.998, P = .011) and having 25% to 49% (OR: 0.72; 95% CI: 0.53-0.97; P = .029) or ≥50% (OR: 0.48; 95% CI: 0.28-0.82; P = .007) of a physician's patients eligible for Medicaid were associated with lower rates of bonus payments. CONCLUSION: Neurosurgeons performed well in MIPS in 2017 and 2018, although the program may be biased against surgeons who practice in small groups or take care of socially disadvantaged patients.


Assuntos
Reembolso de Incentivo , Cirurgiões , Idoso , Humanos , Medicaid , Medicare , Motivação , Estados Unidos
15.
Br J Neurosurg ; 36(4): 494-500, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35264032

RESUMO

PURPOSE: Vision loss following surgery for pituitary adenoma is poorly described in the literature and cannot be reliably predicted with current prognostic models. Detailed characterization of this population is warranted to further understand the factors that predispose a minority of patients to post-operative vision loss. MATERIALS AND METHODS: The medical records of 587 patients who underwent endoscopic transsphenoidal surgery at the Mount Sinai Medical Centre between January 2013 and August 2018 were reviewed. Patients who experienced post-operative vision deterioration, defined by reduced visual acuity, worsened VFDs, or new onset of blurry vision, were identified and analysed. RESULTS: Eleven out of 587 patients who received endoscopic surgery for pituitary adenoma exhibited post-operative vision deterioration. All eleven patients presented with preoperative visual impairment (average duration of 13.1 months) and pre-operative optic chiasm compression. Seven patients experienced visual deterioration within 24 h of surgery. The remaining four patients experienced delayed vision loss within one month of surgery. Six patients had complete blindness in at least one eye, one patient had complete bilateral blindness. Four patients had reduced visual acuity compared with preoperative testing, and four patients reported new-onset blurriness that was not present before surgery. High rates of graft placement (10/11 patients) and opening of the diaphragma sellae (9/11 patients) were found in this series. Four patients had hematomas and four patients had another significant post-operative complication. CONCLUSIONS: While most patients with pituitary adenoma experience favourable ophthalmological outcomes following endoscopic transsphenoidal surgery, a subset of patients exhibit post-operative vision deterioration. The present study reports surgical and disease features of this population to further our understanding of factors that may underlie vision loss following pituitary adenoma surgery. Graft placement and opening of the diaphragma sellae may be important risk factors in vision loss following ETS and should be an area of future investigation.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adenoma/complicações , Adenoma/cirurgia , Cegueira/etiologia , Humanos , Imageamento por Ressonância Magnética , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Transtornos da Visão/etiologia
16.
J Neurosurg ; 136(1): 134-147, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214980

RESUMO

OBJECTIVE: Rescue therapies have been recommended for patients with angiographic vasospasm (aVSP) and delayed cerebral ischemia (DCI) following subarachnoid hemorrhage (SAH). However, there is little evidence from randomized clinical trials that these therapies are safe and effective. The primary aim of this study was to apply game theory-based methods in explainable machine learning (ML) and propensity score matching to determine if rescue therapy was associated with better 3-month outcomes following post-SAH aVSP and DCI. The authors also sought to use these explainable ML methods to identify patient populations that were more likely to receive rescue therapy and factors associated with better outcomes after rescue therapy. METHODS: Data for patients with aVSP or DCI after SAH were obtained from 8 clinical trials and 1 observational study in the Subarachnoid Hemorrhage International Trialists repository. Gradient boosting ML models were constructed for each patient to predict the probability of receiving rescue therapy and the 3-month Glasgow Outcome Scale (GOS) score. Favorable outcome was defined as a 3-month GOS score of 4 or 5. Shapley Additive Explanation (SHAP) values were calculated for each patient-derived model to quantify feature importance and interaction effects. Variables with high SHAP importance in predicting rescue therapy administration were used in a propensity score-matched analysis of rescue therapy and 3-month GOS scores. RESULTS: The authors identified 1532 patients with aVSP or DCI. Predictive, explainable ML models revealed that aneurysm characteristics and neurological complications, but not admission neurological scores, carried the highest relative importance rankings in predicting whether rescue therapy was administered. Younger age and absence of cerebral ischemia/infarction were invariably linked to better rescue outcomes, whereas the other important predictors of outcome varied by rescue type (interventional or noninterventional). In a propensity score-matched analysis guided by SHAP-based variable selection, rescue therapy was associated with higher odds of 3-month GOS scores of 4-5 (OR 1.63, 95% CI 1.22-2.17). CONCLUSIONS: Rescue therapy may increase the odds of good outcome in patients with aVSP or DCI after SAH. Given the strong association between cerebral ischemia/infarction and poor outcome, trials focusing on preventative or therapeutic interventions in these patients may be most able to demonstrate improvements in clinical outcomes. Insights developed from these models may be helpful for improving patient selection and trial design.


Assuntos
Hemorragia Subaracnóidea/complicações , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/terapia , Fatores Etários , Idoso , Infarto Encefálico/complicações , Isquemia Encefálica/etiologia , Isquemia Encefálica/terapia , Infarto Cerebral , Análise por Conglomerados , Análise Fatorial , Feminino , Teoria dos Jogos , Escala de Resultado de Glasgow , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Prognóstico , Pontuação de Propensão , Resultado do Tratamento
17.
J Neurosurg ; : 1-2, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560649
18.
Radiol Artif Intell ; 3(2): e200098, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33928257

RESUMO

PURPOSE: To train a deep learning classification algorithm to predict chest radiograph severity scores and clinical outcomes in patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: In this retrospective cohort study, patients aged 21-50 years who presented to the emergency department (ED) of a multicenter urban health system from March 10 to 26, 2020, with COVID-19 confirmation at real-time reverse-transcription polymerase chain reaction screening were identified. The initial chest radiographs, clinical variables, and outcomes, including admission, intubation, and survival, were collected within 30 days (n = 338; median age, 39 years; 210 men). Two fellowship-trained cardiothoracic radiologists examined chest radiographs for opacities and assigned a clinically validated severity score. A deep learning algorithm was trained to predict outcomes on a holdout test set composed of patients with confirmed COVID-19 who presented between March 27 and 29, 2020 (n = 161; median age, 60 years; 98 men) for both younger (age range, 21-50 years; n = 51) and older (age >50 years, n = 110) populations. Bootstrapping was used to compute CIs. RESULTS: The model trained on the chest radiograph severity score produced the following areas under the receiver operating characteristic curves (AUCs): 0.80 (95% CI: 0.73, 0.88) for the chest radiograph severity score, 0.76 (95% CI: 0.68, 0.84) for admission, 0.66 (95% CI: 0.56, 0.75) for intubation, and 0.59 (95% CI: 0.49, 0.69) for death. The model trained on clinical variables produced an AUC of 0.64 (95% CI: 0.55, 0.73) for intubation and an AUC of 0.59 (95% CI: 0.50, 0.68) for death. Combining chest radiography and clinical variables increased the AUC of intubation and death to 0.88 (95% CI: 0.79, 0.96) and 0.82 (95% CI: 0.72, 0.91), respectively. CONCLUSION: The combination of imaging and clinical information improves outcome predictions.Supplemental material is available for this article.© RSNA, 2020.

19.
Sci Rep ; 11(1): 1381, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446890

RESUMO

Early admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and free text data to identify patients requiring NSICU admission shortly after arrival to the emergency department (ED). We conducted a single-center, retrospective cohort study of adult patients at the Mount Sinai Hospital, an academic medical center in New York City. All patients presenting to our institutional ED between January 2014 and December 2018 were included. Structured (tabular) demographic, clinical, bed movement record data, and free text data from triage notes were extracted from our institutional data warehouse. A machine learning model was trained to predict likelihood of NSICU admission at 30 min from arrival to the ED. We identified 412,858 patients presenting to the ED over the study period, of whom 1900 (0.5%) were admitted to the NSICU. The daily median number of ED presentations was 231 (IQR 200-256) and the median time from ED presentation to the decision for NSICU admission was 169 min (IQR 80-324). A model trained only with text data had an area under the receiver-operating curve (AUC) of 0.90 (95% confidence interval (CI) 0.87-0.91). A structured data-only model had an AUC of 0.92 (95% CI 0.91-0.94). A combined model trained on structured and text data had an AUC of 0.93 (95% CI 0.92-0.95). At a false positive rate of 1:100 (99% specificity), the combined model was 58% sensitive for identifying NSICU admission. A machine learning model using structured and free text data can predict NSICU admission soon after ED arrival. This may potentially improve ED and NSICU resource allocation. Further studies should validate our findings.


Assuntos
Serviço Hospitalar de Emergência , Hospitalização , Aprendizado de Máquina , Processamento de Linguagem Natural , Doenças do Sistema Nervoso/diagnóstico , Triagem , Adulto , Feminino , Humanos , Masculino , Neurociências , Cidade de Nova Iorque , Estudos Retrospectivos
20.
Spine (Phila Pa 1976) ; 46(12): 803-812, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33394980

RESUMO

STUDY DESIGN: Retrospective analysis of prospectively acquired data. OBJECTIVE: The aim of this study was to identify interaction effects that modulate nonhome discharge (NHD) risk by applying coalitional game theory principles to interpret machine learning models and understand variable interaction effects underlying NHD risk. SUMMARY OF BACKGROUND DATA: NHD may predispose patients to adverse outcomes during their care. Previous studies identified potential factors implicated in NHD; however, it is unclear how interaction effects between these factors contribute to overall NHD risk. METHODS: Of the 11,150 reviewed cases involving procedures for degenerative spine conditions, 1764 cases (15.8%) involved NHD. Gradient boosting classifiers were used to construct predictive models for NHD for each patient. Shapley values, which assign a unique distribution of the total NHD risk to each model variable using an optimal cost-sharing rule, quantified feature importance and examined interaction effects between variables. RESULTS: Models constructed from features identified by Shapley values were highly predictive of patient-level NHD risk (mean C-statistic = 0.91). Supervised clustering identified distinct patient subgroups with variable NHD risk and their shared characteristics. Focused interaction analysis of surgical invasiveness, age, and comorbidity burden suggested age as a worse risk factor than comorbidity burden due to stronger positive interaction effects. Additionally, negative interaction effects were found between age and low blood loss, indicating that intraoperative hemostasis may be critical for reducing NHD risk in the elderly. CONCLUSION: This strategy provides novel insights into feature interactions that contribute to NHD risk after spine surgery. Patients with positively interacting risk factors may require special attention during their hospitalization to control NHD risk.Level of Evidence: 3.


Assuntos
Teoria dos Jogos , Aprendizado de Máquina , Alta do Paciente/estatística & dados numéricos , Doenças da Coluna Vertebral , Coluna Vertebral/cirurgia , Comorbidade , Humanos , Modelos Estatísticos , Complicações Pós-Operatórias , Fatores de Risco , Doenças da Coluna Vertebral/epidemiologia , Doenças da Coluna Vertebral/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA